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SUMMARY

The- -reseavek---.poted-hus covers a number of different areas. The
methodology of density estimaion has been considered with particular
reference to the smoothed bootstrap. A new method of fitting parsimonious
additive models has been devised. The topic of statistical integral equations
has been investigated in detail and algorithms for two main cases of
particular interest have been developed and investigated. Applications to
image analysis have been considered. Contributions to the theory of
estimation from indirect information have been made. There has been
careful consideration of the appropriate way to penalise an edge process
model in an image reconstruction. The methodology of nonparametric
discriminant analysis, with particular reference to the CART approach, has
been the subject of considerable attention. The ICM method of image
reconstruction has been studied. A new method of image refinement has
been developed.
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statistical integral eq-lai6-s; stereology;- to g hy; EM algorithms; missing
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L Introduction
Most of the work conducted under the aegis of the project has now been written up in
the form of papers submitted for publication. These are listed in Section 10 below. In
this report, a brief description of the work done will be given under a number of
headings, and fuller details are given in the papers, most of which are attached as
appendices. Against each head are given the numbers of the relevant papers in the
publication list. The same numbering system is used for the appendices.

2. Density Estimation [1,131

One of the aims of the project was the extension of the existing density
estimation methodology in various directions. Among these was the use of density
estimation in techniques such as the smoothed bootstrap. A criterion has been
developed for deciding whether smoothing is worth performing in any particular
bootstrap situation. For full details, see [1]. One novel feature was the use of
Computer Algebra to solve this statistical problem, and Professor Silverman gave an
extremely well received presentation on this aspect to a Royal Statistical Society
workshop on Computer Algebra in Statistics.

In 1951, Fix and Hodgti wrote a technical report which contained prophetic work
on nonparamentic discrimizdnt analysis and density estimation. The report introduced
several important concepts "r the first time, and was never published. It is not just of
historical interest, but contains much material of contemporary relevance. A
commentary [13] has been written placing the paper in context and interpreting its
ideas in the light of more modern developments. The commentary has been submitted
for publication together with the paper itself.

3. Parsimonious additive models [5,101
A very simple and powerful new method for fitting nonlinear regression models was
devised and investigated by Professor Silverman in collaboration with J.H. Friedman of
Stanford. The basic idea is to fit a sequence of segmented linear regressions on single
variables to the data and then to use a suitable stopping rule to decide when to stop
elaborating the model. Finally a backward elimination step is used to resimplify up to
an appropriate point. The paper [51 on this material was selected by the editors of
Technometrics to be the special discussion paper at the 1988 ASA meetings and will
shortly appear with discussion and rejoinder in that journal.

4. Solution of Statistical Integral Equations (6,8,11,15]
A considerable amount of work has been carried out on the general topic of the
solution of statistical integral equations. The main aim has been the development of a
general approach that can be applied to any problem where the model for the observed
data is obtained by applying a (known) compact linear operator A to the function f of
real interest. There are two cases of main interest, where the data arise as
observations of Af at known points subject to error ("regression dependence") and
where the data are observations from a non-homogeneous Poisson process with
intensity Af ("density dependence".) We have developed methodology for both of
these cases, as discussed separately below.
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Regression dependence

Suppose the data .-e of the form Yi = Af(ti) + e, where Af(t) = fA(t,u)f(s)du and
the e, are uncorrelawd errors with mean zero. A natural estimate of f is given by
constrained penalised least squares, where one finds f to minimise
S(f) = IIAf-Y1I 2 + aff', subject to any relevant linear constraints on f, such as
positivity. In all the applications of interest, positivity is a constraint on f and in
some cases f is constrained in addition to integrate to 1. Particular practical problems
of interest arose from consultation with materials scientists. Another practical problem
considered in detail was Lhe determination of the ventilation/perfusion distribution over
the human lung given data on inert gas elimination (Evans & Wagner, J. Appl.
Physiol. 42, 889-898, 1977).

The approach adopted was to apply quadratic programming to a discretised
version of S(f), as follows: the function f was approximated by a vector of values f
on a grid; the vector Af(ti) of the values of Af at each of the values ri can then be
expressed by a simple quadrature rule as Kf, where K is a suitable matrix. The
roughness p t approximated by a quadratic form f*Df. One then
minimises (Y-Kf) (Y-Kf) + afTDf subject to fO and any other relevant
constraints. The quadratic programming method used was that of Wolfe (
Econometrica 27, 382-398, 1959) which involves similar manipulations to the simplex
algorithm for linear programming. The use of Wolfe's algorithm has the advantage
that the final simplex tableau gives zdditional information that is of use as explained
below. The broad conclusions of the work were as follows; some of these are treated
in detail in [15]. It is intended that one or two papers will be written based on this
work.

(a) The quadratic programming algorithm terminated in a reasonable number of steps
in all the applications and simulations tried. For any particular data set, the number
of pivots - and hence the time taken to find. the solution - is approximately constant
as the smoothing parameter a varies.

(b) The positivity constraint alone is not sufficient to provide a properly regularised
solution; some smoothing (i.e. a>O ) is required in addition. This casts a little doubt
on some of the existing methodology in this field, in which one chooses a control
parameter to get a non-negative solution and then assumes implicitly that this solution
will be sufficiently smoothed.
(c) By considering the special case (linear nonparametric regression) where the
minimisation of JIY-AI(t)II + aft"2 can be carried out explicitly, it appears that the
discretisation has a negligible effect, except where a is chosen inappropriately small.
(d) The final QP tableau makes it possible to draw approximate Bayesian posterior
confidence intervals for the curve f with only trivial additional computational effort.
This procedure has been implemented and investigated. One particular point of
interest is the frequentist behaviour of the Bayesian confidence intervals, which has
been considered (for example by Wahba) in the nonparametric regression case. In our
more general setting, it is clear that the choice of smoothing parameter is crucial to
this frequentist behaviour. Wahba has suggested that a smoothing parameter chosen
by generalised cross-validation will give Bayesian posterior int-rvals which are also
(pointwise) frequentist confidence intervals. In the case of ill-posed problems, our
work casts doubt on the generalisability of this claim, because in practice varying a
between quite wide limits produces curves which are completely different in
appearance but which fit the data almost equally well; the difference between the
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solutions lies in a space spanned by singular functions of A with extremely small
singular values. Yet while the goodness-of-fit to the data remains almost unchanged,
the width and frequentist coverage probabilities of the Bayesian intervals changes
dramatically. This general behaviour also shows that it is more appropriate to make
use of prior information rather than attempting to choose the smoothing parameter
automatically. One extremely useful aspect of the posterior intervals was in
demonstrating to a materials science client the effect of the ill-posed nature of his
particular problem. It was immediately clear that the detailed question he was asking
was not resolvable on the basis of the experiment conducted.

Density dependence

Suppose now that the function A is a non-negative function satisfying JA (r,u)dt = 1
for all u and that the available data consist of independent observations Yi drawn from
the probability density Af. We might think of these observations as being "indirect"
observations from the density f of real interest, since in many of the practical
problems of this type, there is an unobservable sample Xi drawn from f itself, and
each Yi is drawn from the density A(y,Xi). Examples of this situation in practice
include the classical stereology problem of determining the particle-size distributions
from data collected on plane sections through a composite medium, and the problem in
image processing of reconstructing a section through the human body by means of
positron emission tomography. Vardi, Shepp and Kaufman (J. Amer. Statist. Assoc.
80, 8-37, 1985) describe this latter problem in detail and give an approach based on
the EM algorithm that aims towards a maximum likelihood estimate of f in any
problem of this kind. In the positron emission tomography problem they consider in
detail, the EM algorithm does not actually converge in a reasonable number of steps,
and so they propose stopping after a finite number of steps thereby obtaining a
smoother estimate of f than would be given by maximum likelihood, but one which
depends on the starting point of the iterations and which is not a limit point of any
iterative procedure.

We have developed a general approach in which a smoothing step is introduced
between each EM iteration. The smoothing part of each iteration involves very little
computational effort. A wide variety of linear and non-linear smoothers have been
tried and the conclusion is that best results are obtained by a simple local averaging
procedure; furthermore the effect of quite a small amount of smoothing is quite
dramatic. The effect of the discrete grey level nature of the images was also
considered and it was found that the best results are obtained by working in continuous
values for the level of the. images and only discretising at the display stage. On all our
empirical evidence, the smoothed EM procedure converges in a reasonable number of
iterations, and furthermore the limit point of the procedure does not depend on the
starting configuration. We have demonstrated heuristically that the smoothed EM
approach corresponds to a classical EM algorithm applied to a penalised maximum
likelihood problem, where the likelihood is penalised by a term depending
quadratically on the square root of the function of interest. The paper [6] dealing with
the specific application to the classical stereology problem is already in press; a more
general discussion, and several particular points concerning thi positron emission
tomography problem, is given in the paper [I I].

It is also possible to apply the smoothed EM approach to problems of the
regression dependence kind. Some comparisons have been made in [15] between this
approach and the quadratic programming method for one-dimensional problems. The
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general conclusion is that the results obtained are very similar, and the quadratic
programming method has the advantage of providing approximate posterior confidence
intervals at negligible cost. For problems in which f is a function on a higher
dimensional space, the quadratic programming approach could not be applied, because
the computational cost of each iteration depends quadratically on the number of pixels
or bins, and the number of pivots required is bounded below by the number of bins in
which the solution is non-zero.

5. Availability of information in indirect observation problems [9,12]
In any indirect observation problem, it is of interest to ask how much information is
actually available in a sample of given size, as compared to an experiment in which
"direct" observations are available from the density function being estimated. We have
concentrated on the positron emission tomography problem, but the general
methodology is applicable to any indirect estimation problem where the singular value
decomposition of the integral operator can be expressed explicitly, and also, as
explained in Section 6 of the paper, to a wider class of related problems.

Given a large sample (Y i ) of indirect observations, we consider the size of the
equivalent sample {Xi) of observations, whose original exact positions would allow
equally accurate estimation of the image of interest. Both for indirect and for direct
observations, we establish exact minimax rates of convergence of estimation, for all
possible estimators, over suitable smoothness classes of functions. For indirect dam
and (in practice unobservable) direct data in a two-dimenpional version of the PET
problem, the rates for mean integrated square error are n-PI(P+2) and (nllogn) -P/(P+I)
respectively, for densities in a class corresponding to bounded square-integrable pth
derivatives. We obtain numerical values for equivalent sample sizes for minimax linear
estimators using a slightly modified error criterion.

One of the technical tools used in the paper is an orthogonal series approach
based on the singular value decomposition of tle integral operator. Although this
originally arose for theoretical reasons, it is shown in [9] that it yields estimates that
are in a sense rate-optimal. Although this estimator can only be constructed in the
special case where the SVD is explicitly available, its calculation in this case can be
carried out quickly, and so it was of interest to explore its practical behaviour. In [12]
an investigation of this kind was conducted. The method has the advantages of speed
and of independence of any pixellation; it has the disadvantages of ignoring the
positivity constraint and of making rapid changes in value more difficult to achieve
than the EMS algorithm. Nevertheless it is clear that the method is certainly useful as
a "quick and dirty" approach in those cases where the SVD is tractable.

6. Edge process models [2,4]

One of the ingredients of recent methodology in statistical image restoration is the idea
of introducing a system of "edges" between pixels in the image. See, for example,
Geman and Geman (IEEE Trans. PAMI-6, 721-741, 1984). If an edge is present
between two contiguous pixels then they are not considered as neighbours in the
restoration procedure. The use of such a process is likely to be of value in restoring
images which consist of a number of regions within each of which the value varies
smoothly. In penalized maximum likelihood estimation of the image, the number and
configuration of the edges is controlled by a penalty term; in model-based restoration
using Markov random fields there is an analogous penalty term in the energy function
of the Gibbs distribution for the edge process. We have investigated how some
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genmetrical insights can be used to provide penalties for the various edge
configurations in a way that is roughly iadependent of the pixel discretisation. The
penalties we obtained are consistent over pixels of different sizes, shapes and
orientations, even if these occur in the same pattern; pixel grids consisting of pixels of
different sizes are a key element in the work on positron emission tomography
discussed in [11]. The cases of square, rectangular, hexagonal and irregular pixels are
considered.

7. Nonparametric Discriminant Analysis

A great deal of work has been carried out on the Classification and Regression Tree
(CART) approach to nonparametric discriminant analysis. This has not yet been
written up in the form of papers, but will first appear in detail in P.C. Taylor's (1989)
PhD thesis.

We have designed and implemented an entirely novel method of displaying the
classification tree making use of sophisticated colour graphics. This method produces
"block tree diagrams" which have great practical value in explaining what the
procedure. is doing, and methodological value in pointing out ways in which the
current algorithm is working well and badly. Another area of attention has been
alternative splitting criteria with particular reference to the problems raised when there
is a large number of classes to be considered. In addition to the Gini criterion and the
twoing procedure suggested by Breiman et al, we have investigated five new suggested
splitting criteria some (but not all!) of which appear to have great promise. The next
main contribution has been in looking at adaptive "anti end-cut factors" which work to
prevent the introduction 'of large numbers of splits that remove very small parts of the
data. Such factors need to depend adaptively on such things as the number of cases at
the current node and the number of species represented, and these ideas have been
incorporated into the procedures.

Further refinements have been made to the display program for presenting the
successive splits carried out by CART on a colour display. In particular ideas for
dealing with categorical variables have been included in the package. The algorithm
itself has been enhanced to include a surrogate splits option, which allows the program
to cope with missing values in the predictor variables. Surrogate splits can also be
used to rank the importance of each predictor variable in terms of their discriminatory
usefulness. Ongoing activity is in two main areas. The first is aimed at reducing the
amount of pruning required to create a classification tree. The second is an attempt to
detect hierarchies in the class structure. For example, when discriminathig betwcen
different types of vehicle, we may hope that tracked and wheeled vehicles could be
distinguished near the root of the tree.

8. Image Refinement (3,14]
A consequence of the use of a statistical model for a true scene is the possibility of
producing restored images on a finer pixel grid than that on which the signal is
originally collected. This fact, pointed out by Jennison in the discussion of Besag's
paper (V. Royal Statist. Soc., 48, 288-289), has formed the basis of a very promising
avenue of research. There are immediate potential applications in LANDSAT imaging
and other forms of aerial photography where, because of the large pixel size, the
proportion of "mixed" pixels can be disturbingly high; a proper subdivision of such
pixels into regions of more than one type should improve classification rates
considerably. More generally, methods which do not impose the unrealistic
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assumption that a scene is uniform within each pixel offer a possibility of more
accurate restoration in all image problems.

Work in this area has been carried out with the assistance of NiL Jubb, whose
(1989) PhD Thesis will contain a full account of progress thus far. It became apparent
at an early stage of our work that there would be insuperable computational problems
associated with pixel subdivision beyond a 2x2 refinement. However. the limiting
case in which arbitrary boundaries are allowed within each pixel was found to be quite
tractable. Our initial work was to implement a method for computing an
approximation to the solution of this limiting case problem in which straight line edges
were allowed within each pixel. This procedure was found to be very effective in the
presence of low levels of additive noise; details and examples appear in [3].

Further work has tackled the same problem in the presence of greater noise
levels. An important technique for producing starting values which can then be
updated iteratively by the edge fitting algorithm is signal aggregation: by adding
together signals from groups of pixels a signal on a coarser pixel grid but with greater
signal to noise ration is obtained. A cascade algorithm, in which a series of
restorations are obtained at successively lower levels of signal aggregation has been
developed. This has been found to produce good restorations for very noisy data
which existing methods fail to handle at all well. Details of this algorithm are given
in [14].

Our research in this area is still continuing. In particular, we are considering the
additional problems associated with grey-level dam and true images which contain
objects separated by sharp boundaries but also with smooth changes in colour within
an object.

9. Markov random Gield algorithms for image restoration [7]

The iterated condiional modes (ICM) approach of Besag and the annealing
approach of Geman and Geman have been investigated. A suite of programs and
algorithms implementing these approaches to image analysis was written in order to
give a basis for experimentation and improvement. A large simulation study was then
carried out on some aspects of these approaches. Qne particular aspect of interest has
been the investigation of the appropriate choice of interaction parametei(s) in the
Markov random field model as used in the prior for the images. A theoretical
argument demonstrates that an appealing procedure is to weight diagonal neighbours of
each pixel by 2T- the amount used to weight direct neighbours. Such a scheme should
produce reconstructions that are are largely unaffred by the wat' in which the pixel
grid is placed on the true underlying image. The broad conclusions of the simulation
study were that worthwhile gains can be achieved using an 'optimal' value of of
Besag's parameter f rather than the portmanteau value 1.5. and that in the absence of
specific prior knowledge about the corrupted scene a second order neighbourhood
model with down-weighted diagonals should be used, for example the one suggested
by the theoretical arguments referred to above. For full details see [7].
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The bootstrap: To smooth or not to smooth?

BY B. W. SILVERMAN

School of Mathematical Sciences, University of Bath, Bath BA2 7A Y, U.K.

AND G. A. YOUNG

Statistical Laboratory, University of Cambridge, Cambridge CB2 ISB, U.K.

SUMMARY

The bootstrap and smoothed bootstrap are considered as alternative methods of

estimating properties of unknown distributions such as the sampling error of parameter

estimates. Criteria are developed for determining whether it is advantageous to use the

smoothed bootstrap rather than the standard bootstrap. Key steps in the argument leading
to these criteria include the study of the estimation of linear functionals of distnbutions
and the approximation of general functionals by linear functionals. Consideration of an
example, the estimation of the standard error in the variance-stabilized sample correlation
coefficient, elucidates previously-published simulation results and also illustrates the use

of computer algebraic manipulation as a useful technique in asymptotic statistics. Finally,
the various approximations used are vindicated by a simulation study.

Some key "ords: Bootstrap; Computer algebra, Density estimation; Kernel; Resampling; Smoothed bootstrap.

.1. INTRODUCTION

" I. The standard bootstrap

The bootstrap is an appealing nonparametric approach to the assessment of errors and
related qtantiries in statisticaJ estimation. The method is described and explored in detail
by Efron k'979, 1982). A typical context in which the bootstrap is used is in assessing
the samplit.g mean squared error a(F) of an estimate 6(X, ..... X,) of a parameter
O(F) based on a sample X ,..., X, drawn from an unknown distribution F If F were
known, a might be most easily estimated by repeatedly simulating samples from F. The
standard bootstrap technique is to estimate al F) by the sampling method, but with the
samples being drawn not from F itself but from the empirical distribution function F,
of the observed data X, .. , X_. A sample from F, is generated by successively selectifig
uniformly with replacement from {X .... X,} to construct a bootstrap sample
{X. X*}. For each bootstrap sample, the estimate 6(X*,. X*) of the quantity
6( F,) is calculated. Since arbitrarily large numbers of bootstrap samples can be construc-
ted, a) F,) can easily be estimated to any reasonable required accuracy from the simula-
tions. The quantity a) F) is then used as an estimate of a F).

The bootstrap method thus consists of two main elements, which are often confused.
There is first the idea of estimating a functional a( F) by its empirical version of (F,),
and secondly the observation that a( F,) can in very many contexts be constructed by
repeated resampling from the observed data. The resampling idea is an extremely
important one, but it has, perhaps, been overstressed at the expense of the underlying
estimation step. Once the two steps are conceptually separated it becomes easier to gain
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a fuller understanding of how the bootstrap actually works. In particular it becomes clear
that there is nothing special about estimating functionals a(F) that are themselves

sampling properties of parameter estimates; the bootstrap idea can be applied to any

functional a( F) of interest.

1"2. The smoothed bootstrap

Because the empirical distribution F, is a discrete distribution, samples constructed
from F, in the bootstrap simulations will have some rather peculiar properties. All the

values taken by the members of the bootstrap samples will be drawn from the original

sample values, and nearly every sample will contain repeated values. The smoothed

bootstrap (Efron, 1979) is a modification to the bootstrap procedure to avoid samples
with these properties. The essential idea of the smoothed bootstrap is to perform the
repeated sampling not from F, itself, but from a smoothed version F of F.. Two possible
versions of the smoothed bootstrap will be described in more detail below; whatever
method of smoothing is used, the net effect of using the smoothed bootstrap is to estimate
the functional a(F) by a(F).

The main aim of this paper is to investigate some properties of the smoothed bootstrap,
in order to give some insight into circumstances when the smoothed bootstrap will give
better results than the standard bootstrap. As an important by-product, the value of
computer algebraic manipulation as a tool in asymptotic statistics will be demonstrated.

Efron (1982) considered the application of the bootstrap, and various other techniques,
to the estimation of the standard error of the variance-stabilized transformed correlation
coefficient. He illustrated by direct simulation that in a particular case a suitable smoothed
bootstrap gave better estimates of standard error than the standard bootstrap. We shall

discuss Efron's example later in the present paper and demonstrate how his results can
be elucidated and extended by using a suitable approximation argument.

Before going on to discuss the estimation of general functionals a(F), we shall first

consider the estimation of functionals a that are linear in F For such functionas we
shall obtain simple sufficient conditions under which using the smoothed bootstrap can

decrease the mean squared error in the estimation of a( F).
We close this section by giving details of the two kinds of smoothed bootstrap considered

in later discussion. Suppose X ...... I, is a set of r-dimensional observations drawn

from some r-variate density f and that V is the variance matrix off or a consistent
estimator of this variance matrix, such as the sample variance matrix of the data. Choose
a kernel function K such that k is a symmetric probability density function of an r-variate
distribution with unit variance matrix, for example the standard unit r-variate normal
density.

Define the kernel estimate f x) of f(xj by

]y'(x)=iV!-Vn'h- " Kh-'V- (x-X,)}, 11.1)

and the shrunk kernel estimate j, ,Ix) by

Density estimates in general are discussed, for example, by Silverman (1986). The

smoothing parameter h determines the amount by which the data are smoothed to provide
estimates. Estimates of the form (1.2) have the property that the density 1h,, has the same

variance structure as the original data, if V is taken to be the sample variance matrix.
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Given any functional a(F) of an r-variate distribution F, the unshrunk smoothed
bootstrap estimate of a(F) is defined to be a(Fh) and the shrunk smoothed bootstrap
estimate is c('h,), where Fh and Ah, are the distribution functions corresponding to
A and fi,, respectively. It is easy to simulate either from fi or from jh., by sampling with
replacement from the original data and perturbing each sampled point appropriately;
for details see Efron (1979) or Silverman ( 1986, § 6.4). Hence values of a (F) and a( Fh.,)
can be obtained in practice by simulation if necessary.

2. LINEAR FUNCTIONALS

In this section we consider the estimation of a linear functional A(F). Because A is
linear, standard calculus demonstrates the existence of a function a(t) such that

A(F) = f a(t) dF(t).

The standard bootstrap estimate A0)(F) will satisfy

= A(F ) = a(t) dF,(t)= n a(X,).

The unshrunk smoothed bootstrap estimate A,,) F) will satisfy

A(F)= f a()fhtt) dt,

and the shrunk smoothed bootstrap estimate A,, F) will satisfy

F) = f a(t)f.,(t) dt,

with il, and fi,., as defined in (1. 1 ) and (1 2) above.
In the discussion that follows we assume that the function a has continuous derivatives

of all orders required. All unspecified integrals are taken over the whole of r-dimensional
space. Assume that V is fixed and define the differential operator D, by

DOa= ' "V,, -a/ax, Ox,.

Our first theorem gives a criterion for smoothing, without shrinkage, to be of potential
value in the bootstrap estimation process.

THEOREM 1. Suppose a(X) and Dva(X) are negativehy correlated Then the mean
squared error of A,( F) can be reduced below that of ,A0 (F) by choosing a suitable h > 0.

Proof' Assume without loss of generality that A(F)=O. by replacing a(t) by
a(t) -f a(x)f(xl dx if necessary. By this assumption,

%ISE ,-( F)j = E{,, F)} var {.4{, Fl} - [ E .- ,. F ]..

Now, by some easy manipulations, .- F) = n wi X, , say, where the sum is over
i = I... n, and where

w1.X= f ath-'lV-K{h 'V--x) dt= K ()a(x--hV Eld' -)
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on making the substitution I = x + hV .A Taylor expansion gives

a(x+ hVl) = a(x) + h Vjf) T (a(x)}2 +!2h2 ( V'f)T H (x)( Vf) + O(h),

where H.(x),, = aa(x)/ax, Ox,. By our assumptions on the kernel K it follows that

w(x) = a(x)+Ih'Dva(x) + 0(h 4), (23)

E{A(F)} = E{w(X)} = 2h2 f f(x)Dva(x) dx+ 0(h'), (2.4)

since I a(x)f(x) dx = 0. Also, since X ..... X, are independent,

n var ,Ah(F) =var fw(X) f a(x)S2f(x) dx + h f a(x)D ,a(x)f(x) dx + 0(h')

(2.5)

using (2.3). Combining (2.4) and (2.5) gives the mean squared error

MsE{A(F)=n-' f a(x),f(x) dx+n-'hf a(xDa(x)f(x)dx O(h4 ). (2.6)

For fixed n, the equation (2-6) demonstrates that, under the assumption that a(X) and
Dva(X) are negatively correlated, the mean squared error of ,,(F) will, at least for
small h, be smaller than that of Ae(F), completing the proof of the theorem. "

The next theorem gives the corresponding criterion for smoothing with shrinkage to
lead to more accurate bootstrap estimation. Define a*(X) by

a*(X) = Doa(X)- X. 7Va(X).

THEOREM 2. Suppose a (X) and a *(X) are negatively correlated. Then the mean squared
error of lA.,(F) can be reduced below that of Ao,( F) = Ao( F) by choosing a suitable h > 0.

Proof. As before assume without loss of generality that A(F) = 0. We have by similar
manipulations to those used above. ,,,(F)= n-'! w*(X,), where

w*(x) I(lIt-h:)" f a(t)h-'IVI-!K[h-'V--{x-(Il-,-h-)-t}] dt

f { a(l h2)-'((x+h V)K(f) df,

on' making the substitution t'=(xi hVi-)/(1+h-). Now, for h small, (lh-'0=l -h:
so

w*(x) a(x+hV -1h"x)K(,)df.

A Taylor expansion of a about x, and our assumptions on the kernel K give

w*(x) = a(x) + ha*(x) - O(h). (2-7,

Now we have

E{Ah,(F)} = E{w*(X)} = 2h- f f(x)a (x) dx- O( ha),
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and, on using (2-7),

n var {ih.,(F)= f a(x) ,f(x) dx + h2 f a(x)a*(x)f(x) dx +Oh').

The proof of Theorem 2 is completed in the same way as that of Theorem 1. -

As a simple illustration, consider the estimation of the sixth moment I x 6f(x) dx of a
univariate density. It is not immediately clear whether smoothing is worthwhile in this
case. In the notation used above, a(x)= x', Dva(x)= 30 Vx4 and a*(x)= 30 Vx'-6x.
It follows that, setting IA, - EX',

coy (a(X), a*(X)} = -61,2 +30 VA,o+6j6-30 VA4, .

If, for example, X has a normal distribution with mean zero and variance V, we have
-2j = V'2-(2j)!/j! and hence coy {a(X), a*(X)} = -34020V 6<0.

Thus a shrunk-smoothed estimate J x 6fh.(x) dx will always, for a suitably chosen value
of h, give a more accurate estimate of E(X 6 ) than will the raw sixth moment if X is
drawn from a normal distribution. Similar calculations for other distributions show that
the same conclusion holds under a wide variety of distributional assumptions for K.

The results obtained by applying the criteria can sometimes be a little surprising.
Suppose X is drawn from a standard normal distribution. Application of the criterion
for estimation by unshrunk smoothing demonstrates that, for small h, this will have a
deleterious effect in the estimation of either E(X 4

) or E(X 2 ) alone. However, for the
linear combination of moments E(X 4 

- cX 2 ), unshrunk smoothing will be worth perform-
ing provided c > 6. Details of this somewhat counter-intuitive result are left to the reader
to reconstruct.

We do not, in this paper, devote much attention to the question of how much smoothing
should be applied in cases where smoothing is worth performing; that problem is left
for future work. However, the last example of this section demonstrates that the question
of how much to smooth can be a rather delicate one. In this example, let 6, denote the
density of the normal distribution with mean zero and variance a. Let

A,(F) = J (b,(t) dF(t),

and suppose that the quantity e converges to zero as the sample size increases. Assume
that F has a smooth density f with derivatives of all orders required. Consider the
estimation of A,(F) by the unshrunk smoothed estimator ,,h(F), constructed using the
normal density as the kernel. We shall investigate the optimal large-sample behaviour of
the smoothing parameter h. Assume throughout that h is small for large n and thatf(0) > 0.

Setting" 82= h 2 + e2 and performing some simple manipulations, we have

Hence, substituting u = t3 and performing a Taylor series expansion,

E , , by a slar a ltrgu nt, = f

Since, by a similar argument,

A, (F) = 6,d(tlf(t)dt=f(O) +Ie~f"O) + OE

0f )
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it follows that

E{Ah ( FI}-A, (F) - h-f'(0 + O(84 ).

By standard arguments

var {AA{(F)} = n' var {4)8(X)} = n-'f()/(281Tr){L O()}.

Thus the mean squared error of Ah(F) will be, asymptotically, given by

MSE {,h(F)h n-'f(O)/(281rt)+ h'f'(O)2 = n'f()(2cri)-i- e"O-

where the terms neglected are of order n-' +6. This approximate mean squared error
is a convex function of 8, and its minimizer will satisfy 8(8-e : ) = C(f)n- ', where
C(f) =f(O)/{2,rlff(0)Z}, or, in terms of h and e,

(1 + h2/e 2)3/2h2 /e 2 = C(f)n-1 E- 5. (2.8)

Denote by Id(R) the ro~ot in [0, ao of the equation

(I _" .)
312 ,

2 = R;

then by simple calculus 41( R) - R - as R - 0, and P(R) - R" ' as R -0c. The asymptotically
optimal h for the estimation of A, will satisfy, from (2.8),

h,, = etk{C(f)n-'E}.

If n E -s-co then ho eC (f) 15n '-1's5-1
= 

C(f)"n
-

"
s

Standard density estimation theory (Parzen, 1962) shows that this is the asymptotically
optimal smoothing parameter for the estimation of the density at zero. Thus, in this case,
the best estimate of A, will be based on the best estimate of the density.

Unfortunately this will by no means always be the case. If n -'E-5- 0, we will have

h, - eC(f)-n -!E-"2' = C(f)in - e'

and if n- e -- a, where 0 < a < x, h, - et{ aC (f) ).
In neither of these cases will it be optimal to construct an optimal estimate off in

order to estimate A,(f), since the optimal choice of h will be smaller, in. order of
magnitude in the first case, than that required for the estimation off itself. Thus the
optimal estimate of A, (F) will be based on an undersmoothed estimate of the underlying
density. This example is, of course, rather artificial, but it does illustrate the likely difficulty
of obtaining general rules for deciding how much to smooth when estimating functionals
of a density. Even in cases where smoothing is advantageous, the amount of smoothing
required may be quite different from that needed for the estimation of the density itself.

3. MORE GENERAL FUNCTIONALS

3.1. Linear approximation
In this section, the work of § 2 is extended, by considering local linear approximations,

to more general functionals of an unknown distribution. When an explicit bootstrap
method is being used the functional being estimated is unlikely to be linear, and so a
more general theory is necessary. Local linear approximations to functionals of distribu-
tions have also been used by Hinkley & Wei 1 1984) and Withers (1983).
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Consider the estimation of a functional a( F,) of an unkr.own distribution F,) underlying
a set of sample data. Suppose that a admits a linear von Mises expansion about F, given
by

at F)-a( Fo) + A( F- F,L31

where the linear functional A is representable as an integral

A(F-F,) f a(t)d(F-F)(t). (3.2)

A detailed discussion of differentiation of functionals and general von Mises approxima-
tion is given by Fernholz (1983). The precise accuracy of the expansion (3.1) depends
on the detailed properties of a, but the error will in general be of order sup F - F&,.

-The expansion (3- 1) gives an obvious approximation to the bootstrap estimate of a(FO).
If F is an estimate of F0, then we will in general have, provided supiF- Fj is O(n'),

a( F) = a( F,) + A(F) - A( F0) + O(n'),

and so the sampling properties of a)(F) will be approximately the same as those of A( F).
The criteria of § 2 can then be applied to the linear functional A. If using an appropriate
smoothed bootstrap will improve the estimation of A(F) then, neglecting any errors
inherent in the linear approximation (3.1), the smoothed bootstrap will be worth using
in the estimation of a(F,).

3.2. The transformed sample correlation coefficient
In this section we consider application of the linear approximation procedure to

estimation of the sampling standard deviation of the variance-stabilized sample correlation
coefficient. Suppose F, is a bivariate distribution with mean zero and correlation.coefficient
p, and let 4 =tanh- ' p. Let r be the computed sample correlation coefficient based on a
sample of n independent observations from F, and let: =tanh' r be the sample estimate
of r. Then the functional of interest is a, F) = {var (:t Efron (1982) devoted consider-
able attention to the estimation of a, ( F,) by a variety of methods, including the smoothed
bootstrap, for the specific case of F, bivariate normal, with marginals of unit variance
and p = :, and for sample size n = 14.

A key step in our investigation of the estimation of ce,.F,t will be an approximate
formula, given by Kendall & Stuart (1977. p. 251). Let

1 4 tL0 L2 AA2,O2) A1120~ l2lI}]
where ii,, is the (ij)th moment given by ju, f xx', dF, (x). Here and subsequently in
this section unsubscripted letters x will denote vectors ix,, x,). Kendall & Stuart give

a, (F,)) = n-a (F,)) - O(n-,

so that estimation of a,( F,) is approximately equivalent to that of at F,).
Consider now the calculation of the function a(t) defined in (3.2). For fixed t let 6,

be the distribution function of a point mass at t and, for any E > 0 let F, be the improper
distribution F,- e6,. Then simple calculus combining 13.1) and f3-2) gives

ai t) = [( dl d,-)a( F. )]. .. 3-4)
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Our functional a(F) is defined for improper distributions, as well as for probability
distribution functions, and hence there is no need when calculating a(t) to co.sider the
more complicated perturbation e(6, - F0 ) to F0 used by Hinkley & Wei (1984). The actual
algebraic manipulations required in the calculation of a(t) from (3-4) and (3"3) are
extremely laborious. However, it is relatively easy to write a program in a computer
algebraic symbolic manipulation language, such as MACSYMA, to perform the necessary
differentiations and substitutions. The function a(t) itself is a fourth-order polynomial
in t and t, whose coefficients depend on the moments of F0. It is only used as an
intermediate step, in the special cases considered below, in the calculation of the criteria
derived from Theorems I and 2, and the calculation of these criteria was also performed
by computer algebra. Further details of the manipulations are available from the authors.

To complete this section we consider the results of the application of the computer
algebraic manipulation procedure to the functional (3-3) for two special cases. Further
details of the results discussed will be given in § 3-3 below. Let Ass(Fo) be the criterion
obtained from Theorem 2 for the shrunk smoothed bootstrap to be advantageous in the
estimation of the functional A( F0 ). Recall that AsB(F,) < 0 means that some smoothing
at least is worthwhile.

Suppose, first, that the distribution of the data can be reduced by an affine transforma-
tion to a radially symmetric distribution Ft. Without loss of generality it can be assumed
that Ft has unit marginal variances. Let R be the radial component of Ft, and denote
by s, the jth central moment of R2 . Computer aigebra shows that the criterion ASB(Fo)

reduces, in dis case, to

AsB( F,)13F = -{3s -- (4 - 3s)s, + s ,- 2s,-'- 24s, + 16J/32, (3"5)

where 00 is the positive quantity 'a( F,))- Using the standard inequality sj ,- s's_, we have

- 32As.( F,))03. --3s, -4ss! - 3s~s&l" 1si-_  2s.+24s.+16

3(s, ! s- -2si/3)" +.s!+68s,/3+16 >16.

This gives the general conclusion that Ass(F,)) -_ -230 for any distribution F, which can
be affinely transformed to radial symmetry.

Another class of distributions for which As( F) is guaranteed not to be positive is
the class for which a particular affine transformation of F to unit variance-covariance
matrix yields a distribution with independent marginals. Let X be a random vector with
distribution F,. and let o-, = var (X), o--2 = var (X,) and p - corr (X, X,). Define a matrix
S by

0 "1 P 1

here the power ' denotes the symmetric positive-definite square root. Define a bivariate
distribution F* by F*(u)= F,(Su) for all 2-vectors u. A random vector Y = S-X with
distribution F* and unit variance-covariance matrix can be obtained by first rescaling
the marginals of X to have unit variance and then rescaling the principal components
o0 the resulting vector to have unit variances. If this natural affine transform of F,) has
independent marginals, then an argument given in 3.3 below demonstrates that
Ass(Fo) - 0. with equality only if X has a uniform discrete distribution giving probability

to each of four points.
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In summary, we have derived the following conclusion. Provided all the approximations
we have made are reasonable, using a shrunk smoothed bootstrap, with an appropriate
smoothing parameter, will give improved estimation of a,(Fo) over that obtained by the
standard bootstrap, if either FO is an affine transformation of a radially symmetric
distribution or F. is an affine transformation, of a particular kind, of a distribution with
independent marginals, and F1 is not a uniform four-point discrete distribution. In
practice the underlying distribution F will not be known. An obvious topic for future
investigation is the construction of empirical versions of the criteria of Theorems I and
2, on the basis of which a decision whether or not to smooth can be made for each data
set encountered. Some preliminary simulations along these lines have been encouraging.

3.3. Some technical details

Throughout this section, define the matrix S as in (3.6), and suppose that X is a
random vector with distribution F. Let Y=S-'X as in § 3.2, and let F*(y)= Fo(S Y)
be the distribution of Y. It is easily seen that the existence of an affine transformation
reducing F0 to radial symmetry is equivalent to the radial symmetry of the particular
affine transformation F*.

Define as(u) =a(Su) and let /c, = E( Y'I Y), .where Y= S-X. In both of the two
special cases considered in § 3-2, k 13 =k, =0, and computer algebraic manipulation
showed that as(u) reduces to the si'mple form

as (u) ={u~u- - k2z,(U2+ U2j

The criterion given in Theorem 2 also reduces to a simple form when expressed in
terms of as. We have, by standard calculus.

a*(X) = Da(X) - X. Va(X) = V2a s( Y) - 1'. Vas( Y) =as*( Y),

say, where a ( u) = {2( 1 + k,,)( u2 + u2) - 4k,. -4u u-}I30 .
Since, by definition, a(X) = as( Y), it follows that

Asg(F,) = coy JafX), a*(X)} = coy {a,( Y), a*( Y)}

= E{as( Y)+[3ok,:}a*( Y) (3.7)

since it is immediate that E{as( Y)} = -3)k..
Soppose, now, that the distribution of Y is radially symmetric, so that yr=

(R cos a, R sin @) with a uniformly distributed on 0, 2-). The form 37) for Asa)F)
can be expressed in terms of even moments of Y up to order 8, and each of these moments
can be expressed in terms of the moments of R,. For example

k- = E(R' sin2 @ cos2 
15 = E(R 4 /8) = (s -4)/8,

where, as in § 3.2, s, = E(R2 -2)' is the jth central moment of R2; the assumption that
E( Y,) = E( Y) = I implies that R2 has mean 2. Performing all these substitutions, by
computer algebra, yields the form (3.5) for AsB(F) and hence the conclusion given in
§ 3.2 for distributions that can be transformed to radial symmetry.

Now suppose that Y, and Y, are independent, but that Y is not necessarily radially
symmetric. It will then be the case that k.. = E( Y2)E( Y2) = I and hence

a~stu) = -4/0(u:1u-u2,-u22+ 1)5---4fas(u)+)30),

It follows that Ass(,Fo) = -4 var {as(y)}, Since Y, and Y, are independent, the only way
var {as(y)} can be zero is for Y to have the four point distribution giving probability
to each of the points (± 1, :m 1); otherwise as( Y) has positive variance, and Asa(F) < 0.
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4. SIMULATION STUDY

The discussion in § 3 above involved heavy dependence on two approximations, one
of them specific to the example under consideration and the other a key feature of our
proposed general methodology. In this section, we investigate both of these approxima-
tions by a simulation study which extends the one carried out by Efron (1982, Table
5.2). All our simulations are carried out under the assurpptions of Efron's model, that
F0 is the bivariate normal distribution with unit marginal variances and correlation 4.
Efron considered only samples of size 14, though we consider here larger sample sizes
as well. We follow Efron in using the values 0 and I for the smoothing parameter h.

For each sample size n, the accuracy of the bootstrap and smoothed bootstrap estimates
of the sampling standard deviation a, (Fo) of the variance-stabilized correlation coefficient
was assessed in three different ways. First, a direct simulation of the bootstrap procedure
itself was carried out; two hundred data sets were generated from F0 and for each one
a,(Fo) was estimated by the usual resampling procedure, using two hundred resampled
data sets of size n in each case. The true value of a, (Fo) is known and so it is possible
to estimate the root mean squared error of the direct bootstrap procedures from our
simulations. The results thus obtained are labelled *direct' in Table 1.

Table 1. Estimates of root mean squared errors of bootstrap estimates of sampling standard
deviations of variance-stabilized and untransformed correlation coefficients; sample sizes n

and smoothing parameters h.

Variance-stabilized Untransformed
n h Dtrect Linear Delta Direct Linear Delta

14 0 0.075 0.071 0.077 0.070 0076 0-060

0,045 0.046 0.057 0-057 0.055 0-052

20 0 0049 0.050 0-053 0046 0-053 0-044
0,033 0,032 0.037 0.045 0-039 0.041

30 0 0 029 0033 0-033 0 033 0-036 0.030

0 019 0021 0-022 0-027 0-026 0027

40 0 0 02t 0-025 0 025 0 024 0 027 0.027
0"015 0016 0017 0021 0'019 0'020

50 0 0'020 0"020 0.021 0-020 0.021 0.019

- 0013 0-03 00t4 0.019 0.015 0.018

100 0 0.011 0.010 0.010 0.010 0-011 0.010
S 0-008 0.006 0-007 0-009 0"008 0.008

Secondly, in order to investigate the accuracy of our linear approximation A h,, (F),

some analytic calculations were carried out, making use of computer algebra. By this
means, the behaviour of the approximation can be studied without recourse to any
simulation. For the bivariate normal population under consideration, the standard devi-
ation of A,,(F)) was found to be n '( 1 + h 2)-2. This quantity is referred to as the 'linear'

estimate of the root mean squared error of the bootstrap procedure. Closeness of the

'linear' and 'direct' estimates of root mean squared error would vindicate our proposed
procedure of studying the sampling properties of the bootstrap by means of linear
approximations.

Our development of the linear approximation involved the intermediate 'step of
approximating a,(F)) by n aCI Fo), as given in (3.3). This intermediate approximation
raises the possibility of studying the sampling properties of the smoothed bootstrap by
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considering those of the approximation (3.3), with F replaced by ,,. This corresponds
to substituting the moments of Fh.,, which are easily calculated from the sample, into
(3.3). By analogy with § 6.5 of Efron (1982), we refer to this procedure as the nonpara-
metric delta approximation to the smoothed bootstrap. For each of two hundred simulated
samples from F) this approximation was calculated. From the values thus obtained, a
third estimate of the root mean squared error of the smoothed bootstrap procedure was
found. This is labelled 'delta' in Table 1.

The analogous investigation was carried out for the untransformed correlation
coefficient r, in the context of the same bivariate normal model. The factor ( I .-p)- is

omitted from (3.3) in this case; otherwise the same algebraic manipulations and simula-
tions were performed as for the variance-stabilized coefficient :. The 'linear' estimate of
the root mean squared error is now in (1 - h"Y 2(2 - 2h + h The results are presented

in the last three columns of Table 1.
The broad conclusions to be drawn from Table I are the same for both correlation

coefficients. Even for the small sample size considered by Efron (1982), our linear
approximation procedure gives good estimates of the accuracy of the t'uli oootstrap
procedure, and the relative improvement due to smoothing is well predicted. Efron's
conclusions could have been obtained without recourse to any simulation. On the whole
the delta procedure. which itself involves some simulation, gives slightly inferior estimates
of the bootstrap's accuracy.

It is known (Davison, Hinkley & Schechtman, 1986) that the variance-stabilized
correlation coefficient is high.y correlated with its linear approximation, but the untrans-
formed correlation coefficient is in general not. The suspicion expressed by a referee that
this may have a deleterious effect on our approximations in the untransformed case does
not appear to have been borne out by the simulation study, except that the beneficial
effects of smoothing the bootstrap were systematically slightly exaggerated by the linear
method in this case.
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SUtMARY

We consider the problem of reconstructing an image from a noisy record. We
describe existing methods due to Geman and Geman (1984) and Besag (1986) which use
a Markov random field model for the true scene but assume that each pixel consists of a
single colour. In order to improve the quality of the restoration at the boundary of
regions of different colours we extend these methods to allow pixels to contain two
regions of colour separated by a single straight line An algorithm for performing the
reconstruction is presented and illustrated by an example.

INTRODUCTION

We consider a rectangular region partitioned into pixels labelled 1,2,.-n. Each
pixel is coloured black or white and the colour of pixel i is denoted by x, which takes
the value 0 for white and 1 for black. The x, are unobserved. We work instead from the
observed record y, which consists of x, plus added noise. We denote the whole scene by
x = [x,; i=I.n} and the set of records by v = [y; i= . n}. The noise
distribution will be assumed to be known but if this were not the case, it could be
established by studying training data.

Recent developments in statistical restoration methods use a Bayesian approach.
The maximum a posteriori (MAP) estimate of the true scene is the value of x which
maximises P(.ly), the conditional probability of x given the record y. By Bayes'
theorem

P(xl>y) - 1( vx) p(xt,

where (. tx) is the conditional likelihood of the observed record. v, given the true
colouring, x, and p(x) is the prior probability of t.



We assume the conditional density function f(yxL) to be known and for the

remainder of this paper we shall assume that the records, yi, are independently

distributed as Gaussian with mean x i and variance o2 . Thus,

1(ylx) 1 f(y Ixj) = (27ca) 2 exp( 202 ,(y,-X,)
2

}.

To obtain a valid formula for p(x), we assume that the true scene corresponds to a
locally dependent Markov random field (MRF) with respect to a specified neighbourhood
system, that is, the conditional distribution of pixel i given the colourings of all other
pixels' depends only on the neighbours of pixel i. We shall use a second order
neighbourhood system in which pixels are considered to be neighbours if they are
horizontally, vertically or diagonally adjacent to each other. A detailed definition and
further examples of Markov random fields may be found in Besag (1974).

The form of p(x) is determined by the nature of the Markov random field. In our
case, we have

p(.x) - e - z (X ),

where Z(x) is the number of discrepant pairs in the scene, r. i.e. the number of pairs of

neighbours which are of opposite colour, and 3 is a fixed positive constant (normally
chosen to be between 0.5 and 1.5 ).

The maximisation of P(xy) now corresponds to the minimisation of

+., y-r) -D Z(x) 12)

over values ofx= tx i i=l..

This expression may be regarded as a penalty, the first term penalising any

difference between the record and the fitted value, the second term penalising excessive
roughness in the reconstruction. Clearly, with 2" possible values for x this is a
computationaliy large problem and necessitates the use of a sophisticated algorithm.

Geman and Geman (1984) use the method of simulated annealing which attempts to
find the MAP estimate of x given the record 'yv. Their method is computationally
extravagant and more recent developments by Greig, Porteous and Seheult (1986) show
that the MAP estimate of any two colour scene may be found exactly using the Ford-
Fulkerson labelling algorithm for maximring flow through a network.

Besag (1986) proposed the computationally simpler method of iterated conditonal

modes (ICM) which updates each pixel in turn, choosing for it the most likely colour
based on its record and the current colouring of its neighbours. In updating pixel i the
new x, is chosen to minimise the sum of terms involving x, in the penalty (2), i.e.
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where Z(xi) is the number of neighbours of pixel i in the current restoration wh'ch are
of the opposite colour to xi. The method proceeds by scanning the scene, successively
updating each pixel until convergence is reached. This will normally occur at a local
rather than global maximum of P(.rly), but, given the possibility of undesirable !ong
range dependencies in the MRF model, this is not a serious drawback and might even be
an advantage.

SPLIT PIXELS

So far we have considered scenes in which each pixel is coloured wholly one
colour. We now allow pixels in the true scene to be coloured partly black and partly
white. Each record yi is distibuted as Gaussian with variance a. and mean p:, the
proportion of pixel i which is coloured black. The restoration methods that we have
previously discussed can be used for this problem by proceeding as if the pixels were
only of one colour but the quality of the restoration at the edges of objects or regions
will obviously be poor. Instead, we can allow pixels in the restored image to be
coloured partly black and partly white. The simplest form of this is to quarter each pixel
and allow it to be filled with the most likely of the 24 configurations. This method.
proposed by Jennison (1986) uses a modified version of ICM, firstly iterating at full
pixel size and subsequently restoring the quarters; in the second stage the same form of
MRF model is used for the subpixels as is originally used for full pixels This method
appears to work well and has prompted work into the further breakdown of pixels.

For further refinement we can either (i) consider an mxm breakdown of each pixel
or (ii) use continuous lines within the pixel to represent the edge. The implementation
of (i) requires the minimisation of

-'Z - - x ) + j Z(xj).

-( = rt 1 =1 k=1 k= =l,=1

where the subscript ijk refers to subpixel j,k within pixel i; xk takes value 0 or I and
Z(x;jk) is the number of subpixel neighbours of subpixel ijk in the current restoration
which are of the opposite colour to xuk (the factor - is needed as each discordant pair is
counted twice). Note that subpixels at the edge of a pixel will have some subpixel
neighbours contained in an adjacent pixei. We can see that as m increases this
minimisation becomes computationally cumbersome. Also, it offers only an
approximation to (ii) and it turns out to be easier to pass to the limit and work directly
with continuous solutions.

The most basic form of ii0 allows a single straight line edge within each pixel and
it is the implementation of this that we shall describe. It is no longer meanincixl to talk
of discrepant pixel or subpixel pairs and we replace the second term of (2) by a multiple
of the total length of edge in the reconstruction x. Thus, the restored image is chosen to
miniruse
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-- '(yj-pj(x))" + P'L(x), (3)
-Ui=1

over images x made up of pixels xi , i=1.n, either of a single colour or divided into
two regions of different colours by a single straight line; pi(x) denotes the proportion of
black in pixel i; L(x) is the total edge length in scene x and 3' is a fixed constant related
to the 13 used earlier.

An advantage of edge length as a measure is that the penalty is rotationally
invariant, i.e. remains constant throughout all rotations of the scene within the region.
This could not be obtained using discrepant pairs as a measure although it has been
shown by our colleague Robin Sibson that this variability can be minimised using a
down weighting of I/h2 for the diagonal adjacencies.

THE RESTORATION ALGORITHM

The restoration is done in three stages, the first two of which have already been
described :

Stage I ICM to convergence on full size pixel grid.

Stage 2 1CM to convergence on 2x2 pixel a-id.

Stage 3 Updating process on the line segments representing the edges.

Stage 3 requires that we now regard the reconstruction as a series of line segments
separating the two colours. An initial representation is obtained in a straightforward way
from the end product of Stage 2. The updating process treats pixels in pairs, selecting
the best place for two edges to meet, given the current restoration of neighbouring
pixels.

As an example, consider the configuration at pixels i and j shown in Figure 1. The
distances a and b are determined by the current colouring of neighbouring pixels and
treated as constant for the moment. The distance IV is chosen to minimise the
contribution from pixels i and j to the total penalty (3). i.e.

g(W) = " (vk - piy) 2
+ 2 '(eu' + eyV), (4)

2a2 k=L,j

where ekw is the length of edge in pixel k when the join is at W and Pkw is the
proportion of black in pixel k when the join is at W.

For the case shown in Figure 1, this penalty is

g 1 (W) = 2

+ 5'"{'vl (-a):+% ,4-(W-b)2).

2o - mm 1mm .mm~~mmmmmm
m m mmmmmmmm m m



/b

Fig. i. Updating the position of edges in pixels i and j.

This can not be minimised directly but the form of

=g I (W) a -_l, - y, b -2Y W" W
dW 4G- FF 1(IV-a)2 NI+( W-b)-

suggests an iterative approach. Given an approximate solution V,- we solve

1 [ Wsa IV, W - b )
-- V--z-2v -b-2v + [3"[ =______ __0___

4 (: N lt( W2 2I -a)Z +l ( slV I -b)-

to obtain

4j3"- a b 1 -(2v,-a+2Y,-b)

IV, LN t-(W ss - a) N l-(V 5s -b)
2  *j

2--4 "' I ,._ _ .+./+ s_-ar N 4'-) 1Vs1 -b) 2 ~

Starting from any sensible initial value, WO , accuracy to 3 decimal places was

achieved after at most four iterations. In practice we take W0 to be the value of W prior
to this update.

Different forms of (4) are possible depending on which neighbours of pixels i and j
contain both colours. There are only four distinct cases that may arise and these are
shown in Figure 2.
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Fig. 2. Possible configurations of edges in two neighbouring pixels.

We have shown the method of solution for case (i) and cases (ii) - (iv) are solved
in a similar way. All other cases can be reduced to one of the above by means of
exchanging and/or inverting the pixels and their colours.

The most natural order of updating the edge pixels would seem to be to follow an
edge around, updating each join in turn, completing circuits of the edge until
convergence. An alternative method is to update every k' join around the circuit,
therefore completing k laps before each pixel has been updated once. Initial results
suggest that this provides additional stability in the updating process: we have found the
value k = 3 to give particularly good results.

AN EXAMPLE

We illustrate the methods we have described with an artificial example. Figure 3a
shows a true image and the superimposed pixel grid. The record from which a restored
image was constructed was obtained by generating a Gaussian random variable for each
pixel with mean equal to the proportion of the pixel coloured black in the true image and
variance 0.012. Figure 3b is the reconstruction after stage 1, in which the ICM method
with 3= 1 has been used, treating each pixel as either completely black or completely
white. Note that this is a rather poor approximation to the true image but it is the best
that can be done without dividing pixels. Subdividing each pixel into four in stage 2
produces the reconstruction in Figure 3c: the amounts of black in each full pixel are now
much closer to the corresponding records and the divisions of split pixels match up well
with the true image. Proceeding to stage 3, we found that using P'=50 gave better
results than those obtained using lower values of 3'- The final reconstruction is shown
in Figure 3d. Despite the coarseness of the original pixel grid and the addition of noise
to the record, this reconstruction is barely distinguishable from the true image.
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Fig 3a True image Fig 3b Reconstruction after stage I

Fig 3c Reconstructon after stage 2 Fig 3d Final reconstructon

FURTHER EXTENSIONS

(a) Consider a pixel which has true colouring as shown in Figure 4. Clearly the
straight line approximation to this edge will be poor and could have an adverse effect on
the reconstruction of neighbouring pixels and pixels further alor g the edge. This may be
overcome using a more intricate restoration method. e.g. allowin2 two straight lines
meeting at some point within a pixel.
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Fig. 4. A pixel containing a boundary
that can not be approximated well

by a single striight line.

(b) The method .presented in this paper can be extended to scenes containing more
than two different colours. Where any two re2ions meet we can adjust the algorithm to
provide a continuous line join. More computation is required to find the best colouring

for a pixel in which three or more regions meet.
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I. INTRODUCION

Geman and Geman [2] discussed a methodology for pixel image restoration

which depended on the idea of modelling the me image by a Markov random field.

A key feature of their approach was the possible placing of "edge elements" at "line

sites" between pixels of the image. Although the idea of introducing an edge process

was introduced in the Markov random field context, its applicability is by no means

confined to model-based methods of image restoration and it is important that the

construction of the process should be given careful consideration.

The edge process idea corresponds to the notion that the image is segmented into

regions over each of which its behaviour is relatively homogeneous. or at least is not

subject to abrupt changes; from one region to another, however, large differences in

behaviour are possible. The changes in behaviour may relate either to overall grey

level or colour, or to more subtle properties such as texture. Of course, the basic

motivation for this kind of segmentation of the image is that the true scene is itself

segmented into regions, and the edge process in the model is an attempt to

approximate boundaries that are present in the true scene. For example, in the context

of remote sensing of a rural area, the boundaries would correspond to topographic

features like rivers and field boundaries. Our aim in this paper is to investigate the

consequences of thinking of the edge process as being a discretised version of an

underlying "true" pattern of boundaries. In particular we are interested in the

calculation of quantitative summaries of the discretised edge process that have genuine

meaning in terms of properities of the underlying boundary pattern, for example the

total boundary length and the complexity of the pattern of regions defined by the

boundaries.

In Geman and Geman's approach, a prior distribution for the true image is

constructed by first constructing a prior Gibbs distribution for the process of edge

elements and then specifying the prior for the pixels themselves conditional on the

edge process. In the specification of the pixel process, contiguous pixels separated by

a line site at which an edge element is actually present are not considered as

neighbours, and so are allowed to have quite different grey levels without incurring

any penalty in the prior likelihood.

An alternative approach in which an edge process is equally important is

penalised maximum likelihood; for background reading see, for example, [4]. In the

image analysis context, the image is considered as a high-dimensional unknown

parameter, and a penalised log likelihood is constructed by subtracting from the log

likelihood of the image given the observed data a penalty term based on the

"dirtyness" of the image. The idea of penalised likelihood is that there are two

conflicting aims in image restoration; one is to obtain a faithful fit to the data, as
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measured by the likelihood, while the other is to obtain a "clean" image, corresponding

to a low value of the penalty. For reasons we shall discuss in Section 2 below, a

convenient penalty to use is the energy function of the prior Gibbs distribution for the

image as considered as a realisation from a random prior process. In that case the

method of maximum a posteriori estimation as proposed in [2] yields exactly the same

restored image as the penalised maximum likelihood approach, even though the

philosophy behind the two approaches is different.

In this paper we shall focus attention on the specification of a suitable penalty for

the edge process. We shall show how various geometrical insights suggest how such a

penalty should be constructed. Our discussion will suggest relative costs for possible

configurations somewhat different from those proposed by Geman and Geman [2]. In

addition our scheme will provide methods for dealing with rectangular, hexagonal and

irregular pixel patterns.

For any given penalty function the Gibbs distribution with energy equal to the

penalty defines a stochastic model for the edge process. However, we stress that our

interest is in developing the penalty for use in image restoration algorithms, rather than

in studying the theory of stochastic models for the edge process. Apart from our

intended application to image restoration, the problem of estimating the underlying

edge length for a discreized image is of interest in its own right; see, for example,

Dorst and Smeulders [1].

U. LOCALLY BASED PENALTY FUNCTIONS

The Gibbs distribution approach constructs a prior likelihood for the edge process

by first defining a set of cliques of line sites. Each clique C consists of a small set of

sites; in the Geman and Geman paper the cliques are the collections of four line sites

with a common vertex. The Gibbs model then gives as the prior probability of any

configuration w

x(a) = Z-exp(-U(w))

where Z is a constant and the energy function U satisfies

U(W) = I Vc(c).
cliques C

Each VC is a function which depends only on those elements of 'o that correspond to

sites in the clique C. Each clique consists of a set of sites all of which are
"neighbours" of one another in some suitable sense, and hence the energy function

U(co) can be constructed by looking at cliques individually; looking ahead to the

prospect of large scale parallel processing, this localisation property is likely to be of

extreme importance in the future.
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In practical applications the observed record often consists of the true image

observed indirectly and subject to the addition of random noise. Maximum a

posteriori likelihood estimation of the underlying true image is achieved by

maximizing over possible images the likelihood of the observed record given a true

image multiplied by the prior probability of that image. Equivalently, one maximizes

the sum of the log prior likelihood -U(oa) and the log likelihood of the record given

the true image w,.

The philosophical approach we shall follow is to consider U(w) not directly as a

prior negative log likelihood, but rather as a penalty fumcion for a given configuration

a. The penalty function is subtracted from the log likelihood of the record given the

true image to give a penalised log likelihood, maximisanon of which corresponds to

maximum a posteriori estimation in the Bayesian model. Compare the spline

smoothing approach to nonparametric regression where the penalty term f g" 2 can be

considered either s a direct "roughness penalty" or as a term in a prior log likelihood-

for bibliography on spline smoothing, see, for example, Silverman [5]. As already

mentioned above, the use of a "locally computable" penalty like U(w) has enormous

potential advantages in an array processing computer environment, and it is on such

penalties that we shall concentrate in this paper.

It is implicitly assumed in the usual restoration methods that each pixel of the

true image consists of a single grey level and edges of regions or objects lie along

pixel boundaries. It is more realistic to assume the existence of a real image in the

plane not necessarily related to any pixel grid; the so called "true" pixel image is then

a discretization of the real image. We shall assume in addition that the real image is

made up of a number of regions divided by boundaries and that the edge process in

the "true" pixel image is constructed to approximate the real boundaries as closely as

possible. Our approach is to attempt to specify the form of the function Vc in such a

way that the penalty associated with a pixel edge process in the "true" pixel image

will, as far as possible, not depend on the way the pixels are constructed or placed on

the real image; instead the value of the penalty U(w) will give a cost based at least

approximately on the real underlying boundary pattern. Particular concerns will be to

eliminate, as far as possible, the effect of the position and orientation of a square

lattice; to discuss how to modify the penalty if the lattice is refined; and to devise

appropriate penalties for irregular pixel patterns. The penalty we shall use will have as

one ingredient an estimate of the total boundary length in the underlying "real" image,

and so has relevance to the problem discussed in [1].
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Ill. SQUARE LrTric.s

Let us turn first to the case of the square lattice, considered by Geman and

Geman [2]. Suppose that the gauge of the lattice is h, and that each clique consists of

the four line-sites meeting at a particular vertex. The possible configurations and the

costs ascribed to these configurations by Geman and Geman [2] are shown in Figure

3.1.

W+
(no lines) (ending) (turn) (continuation) (branch) (crossing)

Type 0 1 2 3 4 5

Cost 0 2.7 1.8 0.9 1.8 2.7

Figure 3.1: Possible types of configuration for regular edge process,

and the costs ascribed to them by Geman and Geman [2].

Note that the low cost of a continuation relative to the cost of an ending, branch

or crossing is intended to favour a small number of long straight edges over complex,

meandering edge systems. However, we shall see that this fails to provide an adequate

treatment of long straight edges at orientations away from the horizontal and vertical.

We shall write vi for the cost of a configuration of type i, and explore the

consequences of various choices of vi .

A. Boundary Length Considerations

Consider, now, the cost of a very simple pattern, consisting of an infinitely long

straight line placed at angle 9 to one of the edge directions of the lattice; without loss

of generality 0 : 0 < -1. The discretization will replace the line by a stepped pattern
4

of the form shown in Figure 3.2.

Figure 3.2: A line boundary and its discretization.
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Because 9 < vertical segments will always be separated by one or more horizontal
4,

segments. Over a long distance L in the x-direcion, the number n. of horizontal

segments will be asymptoticaly Lhz t , and the number n, of vertical segments

asymptotically Lh -1tan e. The number of configurations of type 2 will be 2n, and the

number of type 3 will be n, - n.. Thus the total cost will be

2.,v 2 + (n. - ny)v 3 = Lh- 1(v 3 + (2v2 - v3 ) tan 0).

The total length of underlying boundary is L sec 0, and so the cost c(O) per unit length

of underlying boundary is, for large L,

c(O) =h-1(v3 cos 9 + (2v 2 - v3 ) sin 9). (3.1)

The ideal situation would be for c(O) to be independent of 9, but (3.1) makes it clear

that this is impossible. Define a = v2/v 3 . A natural index of how far c(0) falls short

of ideal is given by the ratio

l(a) = max c(O)/ min c(e).
059!5x/4 O<eaz14

This ratio depends only on a. If a >_ 1, c(O) is monotonically increasing in [0,1],

and so 1(a) = c(!)/c(O) = ai. If a < }, c(9) is monotonically decreasing in
4

and 1(a) = c(O)/c(l) = l/(a4 2). To deal with j < a < 1, define

00 = tan-'(2a - I) and rewrite

c(0) h- Iv3 sec 00(cos 00 cos 0 + sin 00 sin 0}

h-Iv3 sec Oo cos(e - 00). (3.2)

Since for I < a < I we have 0 < 00 < -1, it follows that, for a. in this range, c(O)

has a maximum at 00 and that 1(a) = max~sec 0o , sec (- - 00)). Hence 1(a) is
4

minimized by setting 0o = N8"

The minimum value sec- = (4 - 22")1/2 = 1.082. Thus it follows that the
8

minimax score 1(a) is optimized by setting 2a - I = tan -1, which implies that
8

a = t(1 + tan-!) = 1/' . If this value of a is used, then lines parallel to the lattice
8

directions or those at 450 to these directions will cost the same amount per unit length,
while the most expensive lines will be those at 221° to the axis directions, which will

cost about 8% more. It is interesting to note that the Geman and Geman value

a = 2 yields l(a) = 24i = 2.83, a much larger value.
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It can also be shown, by somewhat tedious algebra, that a = 1/'1F also minimizes

other criteria of variability of c(O), for example the coefficient of Variation of c(e)

with 0 uniformly distributed over [0, ' I.

The arguments of this section make it possible to settle on a charge for

configurations of types 2 and 3. Suppose it is intended to penalize boundaries in the

underlying picture by an amount 6i per unit length. In an ideal world we would like to

choose v2 and V3 in (3.1) to ensure that c(O) = 3 for all 0. As we have seen, this

cannot be attained exactly for all 0, but setting v2/v 3 = 2-112 will minimize the

variability of c(e) as 9 varies. Having settled the ratio v2/v3, it is natural to choose v3

to ensure that (2x)-t 0'"c(8)d9 = ,3. By simple algebra, from (3.2),

(2z)- 0 fc(9)d0 = 4.r-l f4hV3 sec )cos (9 -

= 8-lh-1v3 can (-) =V3h-'k-

where the constant k = -- /tan (1) = 0.948.
8 8

It follows that setting V3 = kth and v2 = 2-1/2k8h will ensure that, while c(0)/

is only exactly I for certain values of 9, it will be the case that c()/fI lies between

0.948 and 1.027 for all 9 and furthermore that the average value of c(O) over

(uniformly distributed) 0 is precisely f.

The above results are also relevant to the problem of estimating the underlying

edged length from a discrtized image as posed in 11]. Suppose a line of fixed length

placed at orientation 0 uniformly distributed over [0,2U] has N2 turns and N3

continuations in its discretized form. Then 2-ikhN2 + khN3 is an unbiased estimate of

the line's original length; it is the minimum variance unbiased estimator among

estimators of the form aN2 + bN 3, as a consequence of the fact that a= /-2

minimizes the coefficient of variation of c(O).

Turning now to the question of how much to charge for branches and crossings,

we shall explain in the next section how a simple argument concerned with counting

the number of regions in the pattern leads to a paradigm for dealing with these

configurations.

B. Counting Regions

Suppose that, in the original pattern. the plane is divided up into a number of

simply connected regions, and tha' the edge process is an approximation to the

boundaries between regions in this configuration. Assume that the pixel size is

sufficiently small relative to the scale of regions in the pattern that each region is
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represented by a single connected set of pixels in the discretized image.

Apart from the total edge length, a natural measure of the complexity of the
pattern of regions is given by the number of regions. If the region boundaries form a
connected set, or equivalently if the regions are simply connected, the number of

regions can be counted simply by counting the number of "branches" and "crossings"
in the edge pattern. To do this, the Euler-Poincard formula [3, p.241] is used.

Suppose the original process is observed on a window W in the plane and at least
one boundary intersects the window edge. Define a vertex to be a point where three
or more regions meet, or where the boundary between two regions meets the edge of
the window. Define a boundary section to be the piece of boundary or of window
edge between two vertices. Let n, be the number of vertices in the pattern, ne the

number of boundary sections and nf the number of regions. The Euler-Poincard

formula gives the equation

-n? e+nf=l

and hence

f += + -

Now both ne and n. can be found by counting the number of branches and crossings
in the pattern, provided that points where an edge meets the edge of the window count
as branches. Let nb be the number of branches and n, the number of crossings. It is

immediate that

nf = n, + nc .  (3.3)

In order to count the number of boundary sections, notice that three boundary
sections meet at each branch and four at each crossing. Thus the number of ends of
boundary sections in 3nb + 4n c, and since each boundary section has two ends, we

have

n, = -2n, + 2n c .  (3.4)

Substituting (3.3) and (3.4) into (3.5) yields

nf = 1 + In, + nc  (3.5)

Formula (3.5) gives a natural price to be charged for branches and crossings. If it is

desired to penalize an amount p for each region in the pattern, then one should charge
jp for each branch point and p for each crossing. If the edge configuration gives rise
to regions that are not simply connected the right hand side of (3.5) must be increased
by I for each connected set of edges which does not intersect the window edge. The
charge (inb + n,)p can be considered in its own right as a penalty for the complexity

of the edge pattern which is calculable from local properties. The extra cost of p for
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each isolated connected set of edges cannot be calculated from local properties and,

thus, cannot be included in a restoration algorithm that operates entirely by local

updating; such an algorithm might, however, be extended to investigate the complete

removal of a small connected set of edges in the later stages of reconsmction.

This scheme of charging for branches and crossings does not include a cost for

the boundary length involved. We shall return to this point in Section 5 after the

necessary tools have been developed.

C. Endings

A pattern made up of disjoint regions cannot, of course, have a configuration of

edges containing any endings at all. Therefore the philosophy that we are adopting

would naturally lead to an infinite charge for configurations of type I in Figure 3.1.

This might still not be completely acceptable: although the configuration in Figure 3.3a

is prohibited, that in Figure 3.3b is still allowed but note that points P and Q, which

lie close together in the same region, are separated by an edg-. I: must also be

p

Q

(a) (b)

Figure 3.3: Possible edge configurations.

remembered that to set any penalty value to infinity may lead to algorithmic

difficulties in using the model in practice. Also, a prior model for the edge process

under which some configurations have probability zero violates the condition of

positive probability for all configurations under which the theory and practice of

Markov random fields are developed; see, for example, Section 4 of [2]. In any case,

it seems excessively dogmatic to exclude certain configurations completely, since there

may be good physical reasons for a boundary to peter out in the middle of a region.

Therefore an approach that is likely to be more satisfactory is to ascribe a cost )L to

each "loose end" in the boundary pattern, where A is set to a relatively large value. In

fact, there is no advantage in setting A much greater than p since a clever

reconstruction algorithm can simply build a small loop of edges onto a loose end at a

cost of Jp for the branch.plus the cost of the edge length involved.
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D. Summary and Erample

We now summarize the appropriate relative costs of different configurations. Let
6i be the desired cost per unit length of edge, p the cost per region of the pattern and Z
the cost per loose end. Then the programme we have set out gives as the costs
ascribed to possible configurations the costs set out in Table 3.1. Costs for edge
length and region counting appear separately; the costs for edge length associated with
configurations 3, 4 and 5 will be derived in Section 5. As explained in Section 3C the
value A = Jp is a reasonable choice but there is no obvious relation between p and /.

The interpretation of 6 as a cost per unit length of boundary makes it possible to
adjust the scores in a reasonable way if the pixel grid is refined, since the cost of edge
length in configurations I to 5 is adjusted automatically.

Type of configuration Cost

0 (none) 0
I (ending) 0.412J6 + J,
2 (turn) 0.670/h6
3 (continuation) 0.94848

4 (branch) 1.4 h6 + Jp
5 (crossing) 1.94h# + p

Table 3.1. Proposed costs for the configurations of Fig. 3.1.

In order to provide an illustration of the results derived in this section, some costs

for the pixellated edge patterns shown in Figure 3.4 were calculated. The pixel size

for Figures 3.4c and 3.4d is half that used in Figures 3.4a and 3.4b, and the unit of

length is taken such that h = 1 in Figures 3.4a and 3.4b. The costs are presented in

Table 3.2. Our costs are given in terms of /6 and p, and are also evaluated for the

case fl = 1, p = 50. It can be seen that rotating the pattern affects the Geman and

Geman costs quite substantially but has very little effect on the costs calculated using

our methods. It can also be seen that our costs maintain consistency across the

different pixel sizes. The slightly larger costs obtained for the smaller pixels is

presumably due to a "fractal" effect in the discretisation of the coastline.
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Figure Pixel Number of cliques Geman Proposed Proposed cost

size type 2 type 3 type 4 cost cost with 13= 1, p=50

3.4a h = 1 142 153 8 453 251.4,8 + 4p 451.4

3.4b h = 1 237 95 8 585 260.0,6 + 4p 460.0

3.4c h = 0.5 333 329 8 lOl1 273 .1,6 + 4p 473.1

3.4d h=0.5 493 221 8 1223 275 .5,8+ 4 p 475.5

Table 3.2- Costs of edge patterns shown in Fig. 3.4

Fig. 3.4. Four discretisauons of the same edge pattern.
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IV. IRREGULAR AND UNEVEN PIXE. ARRAYS

In this section we tun to the case of arrays of pixels that are no longer based on
a regular square lattice. One such case arises if a pixel pattern based on polar
coordinates is used, as shown in Figure 4.1. Such circular pixel patterns arise very
naturally in the restoration of images observed by positron emission tomography; see
Silverman et al. (61 for an application of the circular pixel patterns and Vardi, Shepp

and Kaufman [71 for a general discussion of the positron emission tomography

problem.

Fig. 4.1. A circular pixel array useful for positron emission tomography images.

In general, the pixels might be more irregular still, and might even themselves be
generated by a random process. This is unlikely to be the case where the experimenter

has control over the pixel pattern. However, irregular pixels may well occur, for
example, in geographical applications, where the observed "image" is made up of
measurements averaged or cumulated over small irregularly-shaped regions, and it is

not felt desirable to superimpose a regular grid on the existing irregular pixel pattern.

A. Cliques for Irregular Edge Processes

We shall assume, for the moment, that the pixel pattern forms a tessellation of the
plane or a portion of the plane, and that except at the boundary of the pattern, exactly
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three pixels meet at each vertex of the tessellation. This assumption is, of course,

violated for the circular lattice of Figure 4.1. since some of its vertices are of degree

three and some of degree four. It does, however, hold (with probability 1) for many

randomly generated pixel models, for example if the pixels are the Voronoi polygons

of a homogeneous planar Poisson process.

As in the case of the square lattice, the line-sites in the edge process will be the
boundary sections of the pixel array, and we shall suppose that each clique of the edge
process consists of the three line-sites meeting at a particular vertex. There are now

four possible types of configurations for a particular clique in the edge process,
depending on how many edges are present in the clique. We shall say that the

configuration is of type k for k = 0,1,2,3 if k of the three line-sites in the clique are
actually occupied by edges. These configurations are illustrated in Figure 4.2.

A

Type 0 1 2 3

Figure 4.2: Configurations for a vertex of degree 3.

Although, in contrast with the case of square pixels, there are fewer types of

configuration to consider, the irregularity of the pixels means that it is no longer

necessarily the case that all configurations of a particular type should attract the same

penalty.

The first stage in the assignment of costs to various configurations is to use the

same region counting arguments as in the square lattice case to assign charges 0, jo

and ,p to configurations of types 0, 1 and 3 respectively. It remains to ascribe costs

for the edge length associated with each configuration. In order to do this, construct a

dual edge pattern by placing a point in each cell of the original pixel array, and joining

points if their corresponding pixels have some boundary in common. The vertices of

the dual array can, in principle, be placed anywhere in their corresponding pixels, but

in practice they will have a natural position. For example if the pixels are constructed

as the Voronoi polygons of a point process then the points of the process will

themselves be the vertices of the dual array.

Our assumption that exactly three pixels meet at each vertex of the original

tessellation implies that the dual edge pattern will be a triangulation of the plane. In

the case of the square pixel array the cost of "continuation" configurations was

determined by considering a pattern with a single long straight edge, suitably
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discretized to fit the pixel pattern. In the more general case, it is no longer quite so

clear how this discretization should be performed. One natural way to proceed is to

7rmscribe that an edge segment will be present in the edge process if and only if the

corresponding dual edge is intersected by the straight line boundary. We assume, if

necessary giving the line an infinitesimal displacement perpendicular to its direction,

that no vertices of the dual triangulation lie exactly on the line.

Any edge process in the original tessellation corresponds to an edge process in

the dual triangulation in the natural way, a dual edge being present in the process

whenever the corresponding original line site is occupied. Each clique of the original

edge process will correspond to a triangle in the dual triangulation; the original edge

configuration will be a "continuation" if and only if exactly two of the edges are

present in the corresponding dual clique. Every triangle intersected by the straight line

boundary will give rise to a continuation clique, since exactly two of its edges are

necessarily intersected by the line. We shall now describe two possible approaches to

charging for continuation configurations. The first of these appears more natural at

first sight, but it leads to much more complicated formulas; we shall also show that the

second has the additional advantage of being a genuine generalization of our square

pixel formulas.

B. Two Possible Length Penalties

Let us concentrate on a single triangle i in the dual triangulation. The notation

for this triangle will be as in Figure 4.3. The capital letters A,B,C will be used for

both the vertices themselves and for the angles at these vertices.

A

c

B a C

Figure 4.3: A triangle in the dual triangulation.

The lower case letters refer to the sides themselves and to the lengths of these sides.

We shall derive possible ways of charging for the "continuation" configuration bc

given by the presence of the edges dual to b and c and the absence of the edge dual to

a. These costs will be based on the general idea that boundaries should cost an
amount 3 per unit length; for notational simplicity we shall assume henceforth that

Lw m ~
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,8 = 1, and note that the costs obtained should be multiplied by , in the general case.

Let I be a random line of fixed length L randomly situated in the plane, in a sense

that will be made precise below. Let Li be the length of the intersection of I with the

triangle i. Then our first possible cost for the continuation configuratioa bc is

V(i,b,c) = E(Li I I intersects triangle i through h and c).

rhe motivation for this definition is straightforward. Let I(i,el ,e2 ) be the

indicator variable taking the value I if I intersects sides e1 and e2 of triangle i and 0

otherwise. Let L(i,e ,e2) be the length of the intersection of I with mangle i if

I(i,el ,e2) = 1 and 0 otherwise. Now, ignoring end effects, the total line length

L = 7 L(i,e ,e2 ) where the summation is taking over all triangles i and pairs of

edges (ei ,e2). The total charge for the line 1 is then

S, = I 1(i,el,e 2) VI(i,e 1 ,e2).
(i.E1 ,e1 )

Thus, up to the approximation involved in ignoring erid effects,

E(S1 ) E[Y"I(i,e1 ,e2) E{L(i,el ,e2 ) I I(i,e ,e2 ) = 1}]

- E[TE{L(i,e1 ,e 2 )}

- E( L(i,e i ,e2 )) = E(L) = L (4.1)

and S, is an unbiased estimate of the line length, L. It is clear that the above

argument will also hold if Vl(i,el,e 2 ) is replaced by E~g(i,e1 ,e2 )lI(i,el,e 2) = 1)

for any function g(i,e t ,e2) for which, apart from end effects, ,g(i,el ,e2) = L. Our

second proposed cost is also of this general form.

Figure 4.4: A side with negative projected length.

Let p, be the projected length of the side a on the line 1; this length is to be

counted as negative if I makes an angle of more than - with a, in the sense shown in
2

Figure 4.4. The second proposed cost is

V2(ib,c) = E(pa I I intersects triangle i through b and c).
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To justify this definition, consider the union of all the triangles intersected by the line
1. This forms an irregular strip in the plane. The two edges of this strip, one on each

side of 1, are made up by those edges not intersected by 1. The total projection length

of these edges on 1, neglecting end effects, is equal to twice the length of 1, and the
sum of all the quantities like ipa is equal to L. Hence S2 = 71(i,e ,e2) V2(i,e ,e2 ) is

an unbiased estimate of L.

The sense in which 1 is a random line is as follows. Choose an origin 0 in the
plane and let R be large enough to ensure that the triangle ABC is entirely enclosed
within the circle centre 0 and radius R. Now construct I such that the perpendicular
from 0 to I has orientation uniformly distributed on (0,2x) and length uniformly

distributed on (0,R). This is the distribution of I conditional on I intersecting triangle i
through sides b and c if the pixel grid and associated triangulation is placed down in a
random position and at a random orientation relative to the line 1. By standard

stochastic geometry, the quantities V1 and V2 will be independent of the choice of R.

A-

IL
- B a C

Figure 4.5: A random line intersecting the dual triangle.

We now calculate V, and V2. Let E be the angle between I and BC, measured as

shown in Figure 4.5. The first step is to find the density f(O) of E conditional on I
intersecting b and c. Note first that, of necessity, -C < 8 < B; consider first the

range 0 < 0 < B.

For such 0, 1 will intersect c and b if and only if it intersects c. The set of lines at
orientation O that intersect c make up a strip of width c sin (B-0) and so we have

f(O)- csin(B-0) for0 < 0< B.

For -C < 9 < 0, a similar argument yields

f(O) b sin(C+O) for 0 < -0 < C.

To calculate the constant of proportionality, we note that

c sin(B-O)de + f. c b sin(C+G)de =cfsinqdi+bf'sinqpdip

=b+c-ccosB-bcosC = b+c-a,
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and hence we have

Icsin (B-8)/(b+c-a) 0 < 9 < B

f(e) = lb sin (C+O)/(b+c-a) -C < 0 < 0

otherwise

To calculate V1, consider first 0 > 0. Given that 8 = 0 and that I intersects c and b,

the expected value of Li is half its vajae when E = 6 and I passes through B. This

length is, by the sine formula, equal to c sin A/sincC+O). Hence we have

V, = s (c sin A/ sin(C+O))f(O)dO

+ Jo fib sin A/sin(B-9))f(O)d9 (4.2)

A

c/ C+6

/B-

B C

Figure 4.6: The random line passes through B.

To calculate these integrals, first substitute 9 = C + 0 and use the fact that

A + B + C = r to give

J sin(B-O)/sin(C+O)dO = f Csin(B+C-t,)/ sin dp
r8+C

= sinA B+C cotdi+BcosA =sinA(logsinA - logsin C) + BcosA.

Substituting this and the corresponding formula for the second integral into (4.2) gives,

after some trigonometry,

(b+c-a)V1 = j(c 2B + b2C)sin 2A

+ jsin 2 Af(b 2 + c 2 )log sin A - c 2 log sin C - b 2 log sin BJ. (4.3)

This formula is complicated and inelegant, and it turns out that V2 is much more

simply expressed. Given that 9 = (p, we have Pa = a cos op, and hence

V2 = Ja f" cos Of(O)dO-C

(b+c-afl { ac cos 0 sin(B-9)d9 + fo' Jab cos 0' sin(C-O')d4'}4

(4.4)
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The first integral in (4.4N is equal to

f:ac(sin B + sin(B-20))d = Jac 8 sin B =AB

where A is the area of the triangle z, and hence

V2 = J(B+C)A/(b+c-a) (4.5)

Thus it is clear that the formula for V2 is very simple and more appealing than that for

V1.

A second reason for preferring V2 to V, will be elaborated in Section 5 below. It
is shown there that, for square pixel arrays, the projection approach produces the

minimum variance unbiased estimate of line length.

C. Line Length Associated with Endings and Branches

We now turn to the problem of ascribing a cost for the edge length associated

with configurations 1 and 3 of Figure 4.2. From now on we shall restrict our attention

to the 'projection' cost V2 . As previously explained, the union of all triangles

intersected by the line I forms an irregular strip in the plane and the sum of the

projection lengths of the edge- nf this strip in the direction of I is approximately twice

the length of . This approximation becomes exact if the strip is terminated with edges
AF and BF, as shown in Figure 4.7, and the corresponding edges at its other end.

A

-E

B C

Figure 4.7: An end of line I in the dual triangle ABC.

The vector is a unit vector in the direction of I.

Let pF be the sum of the projections of AF and BF in the direction of I or, more

formally,

pF = (AP' +

where it is a unit vector in the direction of I (see Figure 4.7) and A7' and BF are

vectors. This definition automatically provides a correct treamient of any negative

projections. We define

V2(i,c) = E(PF 1 intersects c and terminates in triangle i),
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where the distribution of I and its end point are as described shortly. Repeating the

argument leading up to (4.1) we see that the sum of costs V2 is now an exactly

unbiased estimate of tue length of line I when the line is placed at random on an

infinite pixel grid. (An infinite grid is needed to avoid problems at the window edge.)

In calculating V2 for this case the distribution of line I is as described previously

but with an extra multiplicative factor proportional to the length of the intersection of !

and the triangle ABC, only lines intersecting AB are considered and the right hand end

of the line is distributed uniformly along the length of the line I inside the triangle.

Again, this corresponds to the conditional distribution of the line and its end, given

that the line enters triangle ABC through edge c and terminates inside the -triangle,

when the pixel grid is placed in a random position and orientation. A long and tedious

calculation gives the value of E(IPF) for this case

V2 = -LK(2a3 +a b+ab2 +2b3 - 3(a2 +b 2)c- (a-b)(bcosA -acosB)c

-3a 2 ccosA logtan A - 3b 2 ccosB logtanjB - 3c(a 2 cosA + b 2 cosB) logtanC }

where

K = (a 2(B cot A + logl ) + b2(A cot B + iog-L ) + abC cosec :7)-l.
C C

This formula simplifies in special cases, for example, on a regular hexagonal grid in

which all dual triangles are equilateral of side a, V2 =(3 43/8;r)alog3 .

A similar calculation could be performed for the branch in configuration 3 of

Figure 4.2. We shall not complete such a calculation but we shall describe the general

approach. A typical configuration in the dual space is depicted in Figure 4.8 and the

appropriate definition of pF is

p, (AP + BP).i-j + (CI' + AlD.-'4 + -(B7 + C

A ///

-. B C

3 13

Figure 4.8: Three lines meeting in the dual triangle ABC

and their associated unit vectors.
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When calculating V2 = E(IpF) it should be noted that configurations such as that in

Figure 4.9 also give rise to the same configuration of pixel edges; this does not cause

a serious probiem and the total edge length will be estimated correctly as long as these

cases are treated as meeting in ABC. Note that for E(IpF) to be properly defined it is

necessary to introduce a joint distribution for the angles between the three lines,

preferably by appealing to specialised knowledge of the image in question.

A'2

Figure 4.9: Three lines meeting outside the dual riangle ABC but still

producing three edges meeting at the vertex associated with ABC.

V. REGULAR ARRAYS REVISITED

In the last section we defined two different ways of obtaining penalties for

continuation configurations. One of these was based on the length of the intersection

of a region in the dual triangulation with a random line, and the other on the length of
projection of such a region on a random line. It turned out that the projection penalty

gave a much more elegant result. In this section, we shall apply the intersection and

projection ideas to the regular square lattice considered earlier, and to rectangular and

hexagonal lattices.

A h B

Figure 5.1: A random line intersecting a square in the dual lattice.
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A. Square Lattices

Our aim is to obtain costs for the "turn" and "continuation" conf:gations as

illustrated in Figure 3.1. The dual of the square lattice is itself a square lattice, and

the part of the dual corresponding to a clique is a single square of side h as in Figure

5.1. The configuration of edges in the original clique will be a straight continuation if

1 crosses AD and BC. We find the distribution of 0 conditional on I being a random

line under this additional cot iition.

A B

D C

Figure 5.2: Lines of inclination 0 crossing AD and BC

form a strip of width 42h sin(' --J6U.

For - < 9< 0 , the set of lines crossing AD and BC will be a strip of width

4'h4q sin (- - 91) by some easy trigonometry. Hence the density f1 (9) of 0

conditional on I crossing AD and BC will satisfy

fl(e) = (2-'l2)- sin (M-101), -- < 9 <

using simple calculus to find the constant of proportionality. The intersection length s

is equal to h sec 0, and hence the expected intersection length is

fx4hseCef1 (9)d = f 1
4(l i-J4-- sec 0 sin ( -9)d9

= (',i-) - , f /4(1- tan O)dO = ('l -) - , [0-log sec 0]-/4

- (- -lf-(I - log 2).

Thus the "intersection" penalty for a configuration of type 3 in Figure 3.1 would be
(- log 2) h/(42 -1) = 1.06 h.

To find the "projection" penalty for such a configuration, note that the appropriate

generalization of the projection argument given in Section 4 is to take as penalty

J(projection of AB and DC) because both AB and DC will be edges of the irregular

strip formed by the union 6f those dual squares intersected by I. Both AB and DC

have projection length h cos 9 on 1, and so the "projection" penalty for a configuration

of type 3 will be
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./ 4 " cosef1(2)d = (I-'4 )-I h x4 cos sin (--O)d9

(2-42)-1 h ',J/4 (sin - sin (20-1)) dO

1rh/Oif-) = kh = 0.95 h
8

where k = - tanj as defined in Section 3.

To find the penalties for "turn" configurations, the work of Section 4 can be used

almost directly, by noticing that both the "intersection" and "projection" penalties will

be the same as those obtained there, for the case of a line crossing the two short sides

of an isosceles right-angled triangle. Thui we set a = h'42, b = c = h,

4- and A = - in the formulas (4.3) and (4.5).

We obtain as the intersection penalty for the turn configuration

V1 = 1h log 2/(2-'2) 0.59 h and for the projection penalty V2 = 2-1/2kh = 0.67 h.

It is noteworthy that the orojection approach yields penalties for the two configurations

that are identical to .. e obtained in Section 3. Thus, by the argument of Section 4,

up to the approximation of ignoring end effects, the projection penalty is the minimum

variance unbiased estimate of line length calculated from cliques of four line sites

only. The intersection approach yields a higher cost for straight continuation and a
lighter cost for turns and, thus, has greater than necessary variabliity with orientation

in the cost of a long straight line boundary.

Following the development of Section 4, we now use the projection cost to assign

costs for edge length in configurations 1, 4, and 5 of Figure 3.1. For an ending

(configuration 1), as shown in Figure 5.3, the required cost is

V2 = E(J(AF + DF).u'il I crosses AD and terminates in ABCD).

The joint distribution of I and F is essentially as for the case of an ending in a triangle

treated in Section 4.3 and routine calculation gives

V2 = (C,2 - 1) + log (N2 + 1))}h/.

A B

E

D C

Figure 5.3: A line I ending in the square ABCD in the dual lattice.

The unit vector u is in the direction of I.
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window
edge

A B

G ----- - -- F
E

:D [C

Figure 5.4: Line I crossing dual edge AD and leaving the window.

Dotted lines show edges present in the edge process.

The unit vector is in the direction of1.

A case not yet mentioned is that of a line ending at the edge of the window.

Figure 5.4 shows a line meeting the window edge after crossing edge AD of the dual

square ABCD. To complete the irregular strip containing that part of I within the

window we need to add edges AF and DF. Thus the cost of edge GF in the one edge

clique associated with G is

V2 = E(Q(AP + Fb).4'I I crosses AD and then leaves the window).

Strictly speaking, this depends on the position of G relative to the corners of the

window. The calculation is simplified if we assume an infinite window edge, in which

case V2 = rk/4.

A 12 B A 12 B A E 1 B A ,12 B

1313 11 "13 13
E 13

C D C D C D C D
'k LS2 UU, J122

U3 U3 u3 u3

Figure 5.5: Three lines meeting in or near dual square ABCD
and associated unit vectors.

A branch (configuration 4) arises when three lines meet. In all four cases shown

in Figure 5.5 the branch is associated with dual square ABCD and the sum of the

projection lengths required to close off the irregular strips containing 11.1, and 13 is

PF = (DF + AF).ii + (AF + BF). + (BF + CF).i3.
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in calculating V2 = E(&p), the expectation is with respect to a uniform distribution of

the point of intersection F in the plane and of the orientation of the set of lines

11, 12 and 13, conditional on sides DA, AB and BC but not CD being intersected. For

a given set of angles between the three lines containing no acute angle, calculation of

V2 by numerical integration or Monte Carlo estimation is straightforward. Note,

however, that if the lines do meet at acute angles the associated edge process can be

more complex than a single branch, as shown in Figure 5.6.

I ' -

12 13

Figure 5.6: Lines 11, 12 and 13 meeting at a point. The dotted lines

representing elements of the associated edge process include a

crossing and three branches.

For the special cases of three angles of 2;/3 and angles of x12, ;r/ 2 and r between the

lines 11, 12 and 13, V2 = 1.32 h and 1.45h respectively. The value V2 = 1.4/h

associated with configuration 4 in Table 3.1 was chosen as a compromise between

these two cases.

A crossing (configuration 5) can arise when four lines meet but this will not

always be the case. In Figure 5.7b the meeting of four lines produces two adjacent

branches rather than a crossing in the edge process: the projection costs calculated for

a branch formed by the meeting of three lines are inappropriate in this case but a

proper treatment would be possible if the clique size were enlarged. When the

meeting of four lines does produce a crossing in the edge process the configuration

must be of the type shown in Figure 5.7a, and the projection cost is
V, = E[ ,(DP + A 7 ).- + (Al + BF). + (B + c-).i 3 + (C +D

where F is distributed uniformly over the interior of ABCD and the orientation of the

set of four lines is uniform conditional on one line intersecting each edge. For the

case of four lines meeting at right angles and producing a crossing in the edge process

numerical integration gives V2 =- 1.94h and this is the value used for configuration 5



- 24 -

in Table 3. 1.

U3 ,\12

A B 13
E 13

DL

314
U4\

(a) (b)

Figure 5.7: Four lines meeting at a point. Dotted lines show elements of

the associated edge process. Unit vectors u . ....U4 are in the

directions of lines Ii1...,14.

B. Rectangular Pixels

In this section we consider rectangular pixels of length h, and breadth h2 .

Corresponding to the six possible types of configurations of edges in Figure 3.1 there

are now nine possible essentially different configurations, since there are two types

each of endings, continuations and branches. For brevity we shall concentrate on the

costs for continuations and turns. The cost of a turn is calculated by applying

.formula (4.5) to a right-angled triangle with short sides h, and h2 , yielaing the

quantity jh 1 h2/(h 1 + h2 - (h2+h l ) 1/ 21.

A B

hl

h2 D hl C

Figure 5.8: A configuration for a clique in the rectangular pixel case.

The cost of a continuation of the kind shown in Figure 5.8 is calculated as in

Section 5.1. Let 90 = tan-(h 2/h). For 101 < 90 the set of lines of inclination 0

intersecting AD and BC forms a strip of width proportional to sin(8 0 - 191), and the

projection length of AB and CD on a line of inclination 0 is h, cos 0. Hence

arguments exactly analogous to those of Section 5A give as the cost of a

continuation" as shown in Figure 5.% the quantity
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hI cos 9 sin ( 0 -8)d8 f /o sin (9-O0 )dO

= ,hI f" (sin 0+ sin(9 0 -29)) d / fo sin 0' d9'

= Jht60 sin 0o/(1- cos 00). (5.1)

The other type of continuation, consisting of two edges of length h2 , will cost an

amount obtained by substituting h2 for h, and x - 90 for 90 in (5.1), viz.

Jh2(x-60 ) cos 0o/(I- sin e0).

C. Hexagonal Pixels

The presence of a single type of first order neighbour makes the use of hexagonal

pixel grids appealing, particularly in applications such as tomography where physical

properties of the imaging system do not define a natural pixel grid. The dual space of

a grid of regular hexagons with sides of length I contains equilateral triangles of side
1 3. Applying the formulas of Section 4, the projection Denalty and the edge length

penalty for a continuation in the dual space are both equal to ri. Since only one form

of branching is possible, the region counting penalty and the expected projected edge

length penalty for a branch will always appear together and it does not help to evaluate

the latter quantity. Thus, the penalties for cliques of type 0, 1, 2 and 3, as depicted in

Figure 4.2, are 0, Jp, kxlfl and Jp respectively.

V1. CONCLUSION

Some simple geometrical considerations have made it possible to define edge

process penalties which are approximately invariant to the scale and orientation of the

pixel grid, and which can in addition be generalised to irregular pixels. The general

idea of evolving penalties based on a conditional expected projection length has the

advantage that consistent penalties can be written down for cliques of different kinds

that appear in different parts of the same pattern.
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Appendix 5

Flexible parsimonious smoothing and additive modeling.
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J. H. Friedman and B. W. Silverman



1. Introduction

In this paper we shall develop an approach to regression fitting based on an extremely simple

idea. Consider first of all the univaxiate case where one has N pairs of measurements (yi, x.),

i= ,.,N, and it is supposed that, as usual,

Y = f(X) + error (1)

where f is a function to be estimated, and the error is assumed to have zero mean; its distribution

may well depend on the value of X.

Regression, or curvefitting, is performed for a number of reasons. The value f(X) is the

conditional expectation of Y given the value X, and so may be used as an estimate of the response

Y for future observations where only the value of the predictor variable X is measured. The

function f can also be studied to try to gain insight into the predictive relationship between Y

and X. By far the most commonly used approach is, of course, linear regression. It is assumed -

rightly or wrongly - that f is a linear function f(X) = aX + b, and then the parameters a and b

are estimated by least squares.

What should be done if the data are not well approximated by a straight line fit? One way

forward is to allow f to be a piecewise linear function, made up of straight line pieces that join

together continuously at points called knots. If the knot positions are fixed before looking at the

data response values yi, then, at the expense of introducing more parameters into the problem,

we will be able to fit a wider range of data sets reasonably well, while still including simple linear

regression as a special case. Furthermore all the necessary parameters can be found and inference

performed using standard linear regression methods (see Agarwal and Srudden, 1980).

In terms of flexibility, much greater dividends arise if the knot positions are not fixed in advance,

but are themselves allowed to depend on the data, including the response values. In this case an

enormously wide range of models can be closely approximated using piecewise linear functions f
with a small number of knots. There is a computational penalty to be paid, because some sort

of search procedure needs to be used to find suitable positions for the knots. In this paper, we

describe a stepwise procedure that makes it feasible to fit piecewise linear models with knot positions

determined by the data, and we also discuss practical strategies for deciding how many knots to use.

One of the attractive features of our method is that it can very easily be extended to the

multivariate case. Suppose that the observations are of the form !yi.x) where each x, is now a

p-vector (xl,x 2,. ,zr,). It is assumed, as before, that the variable Y' depends on X by a relation
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of the-form

Y - f(X) + error = f(XIX 2 ,. ,X') + error.

The way that we make use of our ideas about piecewise linear fitting is to concentrate on the case

where f is a sum of functions of the individual components of X.

f(X) = fh(XI) i- f(X 2 ) + 4 " - + fp(Xp). (2)

This approach is known as additive regression or additive modeling, and replaces the problem

of estimating a function f of a p-dimensional variable X by one of estimating p separate one-

dimensional functions fj. Although not completely general, additive models are often effoctive:

they are easy to interpret, and represent a very important step beyond the simple linear model.

It turns out that our piecewise linear fitting method can be applied easily in the additive

modeling context. Each of the individual functions fj can be modeled as being piecewise linear

with knots that depend on the data, including the response values. Our stepwise fitting procedure

enables all the functions fj to be constructed together, at little extra cost than for a univariate

problem.

The paper is set out as follows. In Section 2.0 we give a general discussion of smoothing

methods. We go on in Sections 2.1 and 2.2 to develop our approach in the univariate case. Com-

putational aspects are discussed in Section 2.3. The important question of model selection - how

many knots to use - is cu ,:dered 'In Section 2.4. In Section 2.5 we provide a simple extension that

produces models with continuous first derivatives (if desired). In Section 3 we explain how the ad-

ditive modeling approach enables our method to be applied in the multivariate case. and in Section

4 we demonstrate how confidence intervals for the estimated function(s) can be obtained. Finally

in Section 5 a number of practical examples display the scope and power of our method as a data-

analytic tool.

2.0 Smoothing

We first consider the case of a single predictor variable, p = 1. The smoothing problem has

been the subject of considerable study, especially in recent years. The lack of flexibility (ability to

closely approximate a wide variety of predictive relationships) associated with global fitting

J

fJ(I)ao + Z aP(x) (3)
J=1

where the P, are predefined functions (usually involving increasing powers of z has led to devel-

opments in two general directions: piecewise polynomials and lo:al averaging. The basic idea of



piecewise polynomials is to replace the single prescribed function fj(z) (of possibly high order J)

defined over the entire range of X values, with several generally low order polynomials, each defined

over a different subinterval of the range of X. The points that delineate the subintervals axe called

knots. The greater flexibility of the piecewise polynomial approach is gained at some expense in

terms of local smoothness. The global function is generally taken to be continuous and have con-

tinuous derivatives to all orders. Piecewise polynomials on the other hand are permitted to have

discontinuities in low order derivatives (and sometimes even the function itself) at the knots. The

tradeoff between smoothness and flexibility is controlled by the number of knots at which disconti-

nuities axe permitted and the order of the lowest derivative allowed to be discontinuous. The most

popular piecewise polynomial fitting procedures are based on splines (de Boor. 1978). An V[-spline

consists of piecewise polynomials of degree M constrained to be continuous and have continuous

derivatives through order M - 1. Smith (1982) presented an adaptable knot placement strategy

for spline fitting based on forward/backwards variable subset selection.

Local averaging smoothers directly use the fact that f(x) is intended to estimate a conditional

expectation, E(Ytz). These estimates take the form

V

f() = Z oI(xr,)yi (4)

where H(z, z') (called the kerrel function) usually has its maximum value at z' = x with its absolute

value decreasing as Ix' - xl increases. Therefore, f(x) is taken to be a weighted average of-the yi,

where the weights are larger for those observations that are close or local to x. A characteristic

quantity associated with a local averaging procedure is the local span s(x), defined to be the range

centered at x over which a given proportion of the averaging takes place.

lH(x, x')dx' = ,

with a a predefined constant fraction (i.e., a = 0.68 or 0.95). If the defining property holds for

more than one value of s(x). then the smallest such value is taken. Many local averaging smoothers

take the span to be constant over the entire range of x, s z) = A, (Rosenblatt. 1971). Others

take it to be inversely proportional to the local density of r values. s(x) = A/p(x) (Cleveland,

1979). Smoothing splines (Reinsch, 1967) are in fact local averaging procedures where the span

turns out to be approximately s(x) , A/[p(x)]1/4 (see Silverman, 1984. 1985). (The quantity A

represents a parameter of these procedures.) Recently, adaptable span local averaging smoothers

have been introduced that estimate optimal local span values based on the values of the responses.

4



y,. (Friedman and Stuetzle, 1982, Friedman, 1984). The span function s(z) controls the continuity-

flexibility tradeoff for local averaging smoothers. For the nonadaptable smoothers this is in turn

regulated by A, the smoothing parameter of the procedure.

There is, of course, a connection between the piecewise polynomial and local averaging ap-

proaches to smoothing. For a given knot placement, piecewise polynomial curve estimates can

also be expressed in the form given by (4) (as can global fits). There will be a characteristic local

span associated with the corresponding kernel. The more flexible the smoother is to local varia-

tion, the smaller will be the span. The basic difference between the two approaches has to do with

how the span is specified. With local averaging smoothers the span parameter A usually enters fun-

damentally into the definition of the kernel function (or some other aspect of the definition of the

smoother) and is either directly set by the user or some automated procedure (ie. cross-validatory

choice) is employed for its selection. For piecewise polynomial smoothers it is indirectly regulated

by the choice of the number and placement of the knots, and the degree of continuity required at

the knot positions.

The trade-off between continuity and local flexibility is a fundamental one that directly affects

the statistical performance of the smoother as a curve estimator. If one assumes that there exists a

popwuatlou trom wtic the uata can be regarded as a random sample. then the guai is to estimate

the conditional expectation E(YJX = z) for the population. Even if this is not the case the

goal is usually to obtaln curve estimates f(z) that have good (future) prediction ability for new

observations not part of the training sample used to obtain the estimate.

Increased flexibility provides the smoothing procedure with an increased ability to fit the data

at hand more closely. This may or may not be good, depending on the extent to which this training

sample is representative of the population of future observations to be predicted. It is often the case

that fitting the training data too closely results in degraded estimates with poor future performance.

This phenomenon is called "over-fitting" and can be quantified through the bias-variance trade-off.

The (future) expected-squared-error can be expressed as

Elf*(z) - f(x)]2 = [f"(z) - Ef(x)]2 
- Varf(.), (5)

where f'(z) = E(YIX = z) for the population (future observations). The expected values in (5)

are over repeated replications of the training sample. The first term on the right hand side of (5)

is the squared distance of the average (expected) curve estimate from the truth. It is referred to

as the "bias-squared" of the estimate. As the smoother is given more flexibility to fit the data.

the bias-squared generally decreases while the variance increases. Thus. for each situation there is



a (usually different) optimal flexibility. If a smoothing procedure is to provide good performance

over a wide variety of situations, it must be able to effectively adjust its flexibility-continuity trade

off for each particular application.

Motivated by the work of Smith (1982), we present an adaptable piecewise polynomial smooth-

ing algorithm. It uses the data to automatically select the number and positions of the knots,

and to some extent the degree-of-continuity imposed at the knots as well. Although quite sim-

pie the method has both .perational and performance characteristics that are quite similar to

the recently proposed adaptable span local averaging smoothers (Friedman and Stuetzle, 1981.

Friedman, 1984). It appears to have superior performance in low sample size and/or high noise

situations.

Our focus is on accurate estimation of the curve itself and not necessarily its derivatives. We

therefore restrict our attention to low order polynomials with weak continuity requirements at the

knots. This has the effect of minimizing the average effective span (see above) for a given number

of knots. This is important if accurate solutions with a small number of knots are required. This will

be the case in high noise small sample environments. Our simplest method employs piecewise linear

fitting where only the function itself is required to be continuous. We also describe a companion

method that fits with piecewise cubic functions where continuous first - but not second - derivatives

are imposed. This has the advantage of producing curves that are more cosmetically appealing, if

less interpretable. It may sometimes, but not always, produce slightly more accurate estimates in

situations where the second derivative of the underlying true curve is nowhere rapidly varying.

Our estimate of future prediction error - to be minimized - is based on the generalized cross-

validation measure (Craven and Wahba, 1979). A brief explanation of generalized cross-validation

(GCV) is given by Silverman (1985, Section 4.1). To explain GCV it is first necessary to mention

cross-validation (CV). Let K' be the number of.knots in the fitted model. The CV score is given by

c

where f-, is the estimate calculated with the current values of the control parameters (in our case

the number of knots) from all the data points except the ith. The cross-validation score is then a

function of K, and gives a measure of future prediction error that may unfortunately be laborious

to calculate.

GCV can be thought of as an appropriate version of CV that has better computational prop-

erties. For a suitable increasing function d(Kf) of the number o, knots, the GCV 'core is defined
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by
,C d(3 (6)

1GC E [yi f f(Xi)?2/[I " 6

If the knot placement values do not depend upon the sample response values yi, then it can be

shown that an appropriate choice of d(K) is

N

d(K) ZH~i,-x,)

where H is the kernel function (4). For piecewise linear fitting by least squares with K knots, this

turns out to be d(K) = K + 1. It can be shown that this choice of d(K) makes GCV and CV

identical in certain special cases.

For adaptable span smoothers, such as those we introduce in the present paper, the approx-

imation is no longer good because of the additional flexibility given by the free choice of knot

positions. To compensate for this, we use (6) as an approximation with d(K) taken to be a more

rapidly increasing function of K; we discuss our choice of d(K) in Section 2.4 below.

2.1 Piecewise linear smoothing

We describe first piecewise linear fitting. For a fixed number of knots K, we aim to place the

knots to give the minimum possible value of the average-squared-residual (ASR)

v

1.AS, = .+ ZI - ,{,1

for estimates f(x) chosen to be continuous and piecewise linear with the given knots. Given a set

of knot positions there are a number of ways to construct the corresponding piecewise linear fit that

minimizes the ASR. These involve choosing a set of basis functions bk(z), 1 < k < K. parameterized

by the knot locations, that have the required continuity properties. The curve estimate is then

taken to be
K

f(x) = ao + E akbk(X). (7)

k=1

The values of the coefficients a, ak corresponding to the piecewise linear curve that minimizes

the ASR, are obtained by a ( K + 1)-parameter linear least-squares fit of the response Y on the

basis function set bk(X).

There are a variety of basis function sets with the proper continuity properties for piecewise

linear fitting. The most convenient for our purposes is the set

bklx) = (X - tk)+



where tk is the location of the kth knot and the superscript indicates the nonnegative part. The

convenience of this basis stems from the fact that each basis function is parameterized by a single

knot. Thus, adding, deleting, or changing the position of a knot affects only one basis function.

Optimizing the ASR over all possible (unequal)locations for the K knots is a fairly difficult

computational task. We therefore consider the subset of locations defined by the distinct values

realized by the data set. This has the effect of providing more potential knot locations, and

thus more potential flexibility, in regions of higher data density and correspondingly less potential

flexibility in sparser regions. This attempts to control the variance, since regions where the ratio

of data points to knots is low can give rise to locally high variance in the curve estimate.

Even the (combinatorial) optimization of the ASR over this restricted set of locations is

formidable owing to the large number, N, of potential basis functions from which the optimiz-

ing K must be chosen. We therefore adopt a stepwise strategy for knot placement. The first

knot (k = 1) is placed at the'position that yields the best corresponding piecewise linear fit.

Thereafter, each additional knot is placed at the location that gives the best piecewise linear fit

involving it and the k - 1 knots that have already been placed. Knots are added in this manner

until some maximum number of knots (K,,..) have been positioned. This process yields a sequence

of Km:. models, each one with one more knot that the previous one in the sequence. That model

in the sequence with smallest GCV as defined in equation (6) is chosen for further consideration.

The number, K,,,,, of models to be considered should be chosen so that the model minimizing the

GCV is not too close to the end of the sequence. Owing to the forward stepwise nature of the

procedure, it is possible for the GCV sometimes to increase locally as the sequence proceeds and

then begin to decrease again. The bound K,. should be large enough so that the GCV associated

with the last model is substantially larger than the minimizing one in the sequence.

The model (with h'" knots; 0 < K" < Km~x) that was found to minimize the GCV is next

subjected to a backwards stepwise deletion strategy. Each of its knots is in turn deleted and the

corresponding K - 1 knot model is fitted. If any of these fits results in an improved GCV. the one

with the smallest is chosen. permanently deleting the corresponding knot. This procedure is then

repeated on the new h* - 1 knot model, deleting a knot if a better model is found. This continues

until the deletion of any remaining knot results in a curve with higher GCV.

This knot deletion stratcgy can sometimes result in an improved model because of the nature

of forward stepwise procedures. The first few knots must deal with the global nature of the curve

without the benefit of the additional knots that come later. They are. therefore, forced to ignore

the fine structure. Knots that are added later in order to model the fine structure can in aggregate



also account for the global structure, thereby causing the initial few knots to be redundant.

Knot deletion as described above seldom results in a dramatic improvement in GCV. It is worth

doing for the small to moderate improvement it sometimes provides, because it adds almost nothing

to the computational burden. All necessary calculations can be done using summary statistics

(basis covariance matrix and response covariance vector) already calculated for the original K-

knot model. No further passes over the data are required.

2.2 Minimum span

A natural strategy would be to make every distinct observation abscissa value a candidate

location for knot positioning. This would correspond to allowing the minimum local effective span

to include only a single observation. In low noise situations such a strategy can give reasonable

results. In high noise environments, however, this can lead to unacceptably high local variance.

A solution is to impose a minimum effective span by restricting the eligible knot locations. The

simplest implementation is to make every (distinct) .1fth observation (in order of ascending .- value)

eligible for knot placement. This implementation also reduces computation by a factor of .V/.I in

the absence of ties.

A reasonable value for If. as a function of .V, can be obtained by a simple coin tossing

argument. Suppose yi = f"(z) -4- ,, 1 < i < .V, where E, is a mean zero -andom variable

with ; symmetric distribution. Then si has an equal chance of being positive or negative. A

smoother will be resistant to a run of length L of either positive or negative errors so long as

its span in the region of the run is large compared to L. If not, the smoother will tend to follow

the run and hence incur increased (variance) error. A piecewise linear smoother can compietelv

respond to a run without degrading the fit in any other region (irrespective of "he placement of

the other knots) if it can place three knots within its length. It can partially iespond with two

knots in the run for an unfavorable placement of the other knots i.e. one of them close to the

start or end of the run). This would suggest that the tninimum knot increment Hl should satisfy

.A1 > L_1x/3 ior Al > Lmax/2.5 to be conservative where Lm, is the largest positive or negative

run to be expected in .V binomial trials.

Let Pr( L) be the probability of obsprving a run of length L or longer in .N tosses of a fair coin.

For small vatues of this probability a close upper bound is given

Prf L, = 21-V
L 7=1



(Bradley, 1968). One can choose a value a for this probability

Pr(L) = (10)

(say a = 0.05 or 0.01) and solve (9), tiO) for the corresponding length L(o). Setting V! = L(a)/2.5

would (with probability a) give resistance to a run of positive or negative error values. Solving (9),

(10) for L(a) would have to be done numerically. It turns out that the simple formula

L(cs) = -logI[/n(1 - a)]

approximates the solution quite closely (within a few percent) for a < 0.1 and N > 15. This

suggests that a conservative increment for knot placement is given by

M(.V,a) = -log 2[--in(1 - a)]/2.5 (11)

with 0.05 < a < 0.01.

2.3 Computational Considerations

For each k > 0. at the kth step in the forward stepwise procedure described in Section 2.1 it is

necessary to optimize the pcsition of tne kth knot (over all eligible locations) given the positions of

the k - I previously placed knots. For a given knot placement increment M there are (in the absence

of ties) N/M - k + I eligible places to position the kth knot. (The positions of the k - I previously

placed knots are not eligible.) At each such potential new knot location a linear least-squares fit

must be performed to obtain the corresponding piecewise linear smooth and its associated ASR.

Thus approximatley N/A, linear least-squares fits must be computed to place each knot. If this

were implemented in a straightforward manner it would give rise to prohibitive computation in all

but the richest computing environments. Enormous computational gains can be realized, however.

by examining the set of eligible knot locations in a special order that permits the use of rapid

updating formulae associated with the basis (i). This strategy involves visiting the potential knot

positions in descending abscissa value and taking advantage of the fact that (for t' > t")

= oX < t"
(X - t')+ - (Z- t'), I z-t" f" < X < 11 (12)

tl - t .X > t'

The linear least-squares fit for the k-th knot (located at t = f", can be acc,,mplished i), solving

the normal equations

Ba =c 3

1o



where B is the k x k covariance matrix of the k basis functions (8),

Bie -Z bWxj)[bj(xi) - 6
j]
, (14a)

and c is the k-dimensional covariance vector of the response with each basis function

N

Cj = Z(yi - )bj(zi). (14b)

Here bj and 9 represent the averages of the corresponding quantities. The solution vector a =

(a,-', ak) represents the coefficients corresponding to the optimizing piecewise linear fit (7) given

the knot locations t5, •, tk. The ASR of the fit is then given by

p

ASR = Var(Y) - E ac, /N. (14c)
j=l

Using (13), (14) as prescriptions for computing the corresponding quantities at each potential

knot location leads to the prohibitive computation mentioned above. The first thing to notice in

attempting to save computation is that only-ck and B~k, 1 :5 j < k need to be recomputed since

only Lhe kth knot location is changing. (This reduces the computation by a factor of k.) The next

thing to note is that if these quantities have already been computed for a knot located at tk. = t'

then, from (12), a simple series of updates gives them for a knot located at ti = t" It" < t'). Let

so = Z (Yi- )

S= (b(z,)-b6), 1<j<k-1,

U= 1. and v X c

Then

ck(t") C(t') (t'-t")so + (X, - t"'("o, - ).

B:k=t") Bpk(t') - it' - t")s' -- (r, - t")(b,(x,) - b). 1 j k - I

Bkk(t") = Bkk,(t') -_(t'2 -t"z') 2ft' - t"',v- -  q -t"'2

gives the quantities that enter into the normal equations (13) for t = t". civen their values at

tk = t'. All values are initialized to zero (i.e. cdr..,l =B,(v- = 0. 1 < k,.
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These updating formulae provide the ingredients for the normal equations (13) at all potential

knot locations with total computation of order kN. It remains to solve the normal equations at

the (approximately N/M) eligible locations for knot placement. This can be done most rapidly by

using the Cholesky decomposition of B followed by back-substitution ee Golub and Van Loan.

1983). Since only the last row and column of B are changing, its Cholesky decomposition can be

updated with k2 computations (Golub and Van Loan, 1983). The back substitution can also be

performed in k2 computation. Therefore the dominant part of the computation for optimizing the

ASR with respect to the position of the kth knot is of order kON/M. The computation associated

with a single linear least-squares fit is of order kN. Therefore, the updating strategy permits the

implicit evaluation of N/M linear least squares fits with less computation than a single such fit.

The entire procedure for placing all Km.i knots in the forward stepwise procedure requires roughly

the same computation as Kmx/3 linear least squares fits with Kmax variables.

The computational strategy outlined above emphasizes speed over numerical stability. First of

all, the one sided basis (8) is known to have poor numerical properties compared to other possible

representations of piecewise linear functions (de Boor, 1978). Their advantage lies in the fact

that each basis function.is characterized by a single knot. This leads to the simple and rapidly

computable updating formulae derived above. A second compromise is the choice of the normal

equations with the Cholesky decomposition of the basis covariance matrix to perform each linear

least-squares fit. It is well known that using the QR decomposition of the basis "data" matrix would

provide superior numerical properites (see Golub and Van Loan, 1983). Unfortunately, updating

the QR decomposition requires computation proportional to k.V (compared to k2 for the Cholesky

strategy) which would cause the total computation to be proportional to N 2 .

Potential numerical difficulties associated with this particular strategy are mitigated by tw6

factors. First the minimal span requirement (11) limits somewhat the correlation between basis

functions (8) associated with adjacent knots. Second, for sample sizes that are not extremely large.

the number of knots is generally quite small, keeping the size of the associated least-squares problem

small. Numerical problems tend only to arise when this strategy is applied to very large problems

(typically N > 500) for which the resulting solution is a very complex curve requiring a great many

knots. For these cases numerical stability can be achieved by slightly deoptimizing the least-squares

fit (13) at each potential location for the kth knot. The basis coefficients a = -a. .ak) of the

piecewise linear fit are taken to be the solution to

i - EIa = C.
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with I being the k x k identity matrix, a-ja the value of F chosen to be just iarge enough tc

maintain numerical stability. Although these coefficient values can be somewhat different from

those produced by (13) in highly collinear settings, they produced nearly identical curve estimates

(7). The criterion used to select the best knot location is still the ASR. Typically, taking

e = 10- 5 trace B/k

maintains stable computation while having very little effect on the resulting curve estimate.

2.4 Model Selection.

In order to implement the forwards/backwards stepwise knot placement strategy described in

Section 2.1 it is necessary to have an estimate of the future prediction error. For procedures that

are linear in the ,esponses (4) a variety of estimators (model selection criteria) have been proposed

(Akaike, 1970, Mallows, 1973, Craven and Wahba, 1979, Shibata, 1980, Breiman and Freedman.

1983). For a given knot placement (fixed set of regression variables) our method is linear in the

responses. However, we use the response values to determine where to place the knots. As a

result our curve estimator is not linear in the responses (H(x, xi) depends upon yj ... y,). There is

increased variance in the curve estimates corresponding to the variability associated with the knot

placement that is not incorporated into the above criteria. For nonlinear procedures, techniques

based on sample reuse (Cross-validation, Stone, 1974, and Bootstrap, Efron, 1983) are appropriate.

These require considerable computation, however, and a common practice is simply to ignore the

increased variability associated with model selection. If the number of selected variables is not very

much smaller than the size of the initial set. the increased variance is not large, and such a strategy

may be effective. In our situation, however, this is not the case. We intend to select a few knots

usually from a very large number of potential locations.

The basis for our model selection strategy lies in the work of Hinkley (1969, 1970) and Feder

(1975). They consider the problem of testing the hypothesis that a two-segment piecewise linear

regression function in fact consists of only a single segment, in the presence of normal homoscedastic

errors. Specifically, it is assumed that

Y, = a + bXj + c(X, - t)
+ 

+-, 15

with s, N(O. a2), and one wishes to test the hypothesis that c = 0. If the knot location t is

specified in advance then (under the null hypothesis H0 : c = 0) the difference between the kscaled)

residual sums of squares from the respective two and three parameter least-squares fits follows a
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chi-squared distribution on one-degree-of-freedom, X?. That is. the additional parameter, c. uses

one additional degree-of-freedom.

When one adjusts the knot location t. as well as the coefficient c, then this is no longer the

case. Furthermore, under the condition c = 0 the parameter t is not identifiable, and so we

cannot use the usual asymptotic theory and just add a degree-of-freedom for the additional fitted

parameter t. Feder (1975) shows that (under H0 : c = 0) the difference between the residual sum-

of-squares from the respective two and four parameter fits asymptotically follows the distribution of
the maximum of a large number of correlated - and x2 random variables. Furthermore, the precise

correlational structure (and thus the distribution) depends on the spacings of the observations. Such

a distribution will give rise to considerably larger test statistic values than y2 and generally larger

values than even X2. That is, the additional parameter t uses more than one additional degree-

of-freedom. Hinkley (1969, 1970) reports strong empirical evidence that the distribution closely

follows a chi-squared on three degree-of-freedom. Thus, fitting both the additional coefficient, c,

and the corresponding knot location, t. uses about three additional degrees-of-freedom.

A similar effect was reported by Hastie and Tibshirani (1985) in the context of projection

pursuit regression (Friedman and Stuetzle. 1981). Here the model is

p

Y= g(Zo'j~ri) +Et
2=l

with -- .V(O,a2'), and g is a smooth function whose argument is a linear combination of the p

predictor variables. The objective is to minimize the residual sum of squares jointly with respect

to the parameters defining both the function and the linear combination in its argument. The

null hypothesis H0 is that g is a constant function. Hastie and Tibshirani (1985) performed a

simulation experiment to obtain the distribution of the scaled difference of the residual sum of

squares as a function of the number of parameters associated with the function g, for p = 5 and

N = 360. They found that the expected value of this distribution was always great-, than the sum

of the number of parameters associated with both the curve and the linear combination (except

for the degenerate case - g linear). This effect became more pronounced as more parameters were

associated with g. These results, together with those of Hinklev ( 1969. 1970) and Feder ( 19751.

indicate that the number of degrees-of-freedom associated with nonlinear least-squares regression

can be considerably more than the number of parameters involved in the fit.

Our knot placement strategy does not perform an unrestricted minimization, but rather min-

imizes the ASR over a restricted set of eligible knot locations. In the absence of a large number of
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ties, however, the solution value for the ASR is not likely to be a great deal different. Thus, follow-

ing Hinkley (1969, 1970) and associating a loss of three degrees-of-freedom for each knot adaptively

placed (with our strategy) seems reasonable, if a bit conservative. We therefore use

d(K) = 3K + 1, (16)

in conjunction with the generalized cross-validation estimate of future prediction error (6), as a

model selection criterion to be minimized.

2.5 Piecewise cubic fitting

Continuous piecewise linear curves provide maximum flexibility for a given (small) number of

knots. They also have the advantage of ready interpretation: linear relationship within subintervals

of the range of X. Their principal disadvantage is the discontinuity of the first derivative (infinite

second derivative) at each knot location. This causes the curve to be cosmetically unappealing to

some.

.Also, if the true underlying function f*(x) (5) does not have a locally high second derivative

close to a knot location, then a piecewise linear approximation will exhibit a small increased error

in the neighborhood near that knot. (This is in contrast to the corresponding first, and especially,

the second derivative estimates which contain much larger errors.) If the second derivative of f'(z)

is everywhere slowly varying then (slightly) more accurate curve estimates can be obtained by

restricting the variation of the second derivative. This is at the expense of reduced flexibility to fit

curves that do have locally rapidly varying second derivatives.

The same considerations (see Section 2.0) that led to the desirability of piecewise linear ap-

proximations guide our approach to piecewise cubic fitting. We seek a curve estimate whose func-

tion and first derivative values are everywhere continuous. Under that constraint we would like an

estimate that closely resembles the corresponding piecewise linear fit. In particular, we do not wish

to require, in addition, everywhere continuous second derivatives.

A simple modification of our basis functions (S) (used for piecewise linear fitting) leads to an

approprikte basis for the corresponding piecewise cubic approximation:
0 X <tC_

Bk(x)= qk(x-tk-) 2 + rk(x - tk_) 3  t,'_ < z < t+ (17){ x-tk t., < X
with tk_ < tk < tk+.

Setting the coefficients qk and rk to

qk = (2t + t_ - .3tk)/(tk. - _

rk: = (2tk - t;:+ - t:_ )/(tiz. - t :_ )3 1S



causes Bk(X) (17) to be everywhere continuous and have continuous first derivatives. Outside the

interval tk- < x < tk+, Bk(x) is identical to the corresponding piecewise linear basis function

bk(X) (8) with a knot at tk. Inside the interval Bk(x) is a cubic function whose average first

and second derivatives (over the interval) match those for the corresponding bh(x). The second

derivatives of of Bk(z) exhibit discontinuities at tk+ and tk-. Far from the central knot location

tk, Bk(X) has the same properties as bk(x), so that both bases will have similar characteristic spans

(see Section 2.0). Close to the central knot (inside [tk_, ik+) B,,(x) an approxiiat'on to bk(z)

with continuous first derivative.

Knot placement based o,, piecewise linear fitting (Sections 2.1 - 2.4) is used to select knot

locations for piecewise cubic fits. The resulting knot locations t1 ... tK are used as the central

knots for the cubic basis BI(x) .. .B(x) (17). The side knots {tk..tk+}, 1 < k < K, are placed at

the midpoints between the central knots. Let t(j) ... t(K) be the central knots in ascending abscissa

value. Then

t(+= (t(k) + t(k+l))/2 19)

for 2 < k < K - 1. The extreme knot locations, tl+ and tK _ are defined as in (19). The outer sine

knots are defined by

t(i)_ = (t(s) + Z(l))/2

t(K)+ = (t(K) + .r(.v))/2 (20)

where x(1 ) and xv) are respectively the lowest and highest sample abscissa values. If the knot

placement procedure happens to put a knot at x() (pure linear term in the model) then the

corresponding basis function is taken to be B(j)(x) = x - x(j ) .

The piecewise cubic curve estimate

fc(x) = ao + akBk(x) (21)

is obtained by minimizing the ASR with respect to the coefficients ao ..- a,. In the interior.

t(l) _ < x < t(K) , it is piecewise cubic with second derivative discontinuities at the midpoints

between the central knots t(kl+ = ttk+), 1 < k < A' - 1. In the outer regions. z < ttl)-

or x > t(K), the curve estimate is taken to be linear. This helps to control the high variance

associated with the extremes of the interval ( "end effects"
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Although the piecewise cubic fit seldom provides a dramatic improvement, it requires very little
computation (one additional linear least squares fit) beyond that required for the (piecewise linear)

knot placement. One can compare the GCV (6) (16) (equivalently. the ASR) for the piecewise

linear and cubic estimates, choosing the one that is best. If a strong prejudice exists for continuous

first derivatives, then one might prefer the cubic estimate even if it provides a slightly poorer fit to

the data.

3.0 Additive modeling

The simplest extension of smoothing to.the case of multiple predictor variables, . .. Xp, is the

additive model (2). Flexible additive regression has been the focus of considerable recent interest.

It is a special case of the projection pursuit regression model ("projection selection", Friedman and

Stuetzle, 1981). It also represents- special cases of the ACE (Breiman and Friedman, 1985) and

generalized additive models (Hastie and Tibshirani, 1984, 1986). Stone and Koo (1985) suggest

additive modeling based on a central cubic spline approximation, with linear approximation past

the extremes, and nonadaptive knot placement.

The smoothing procedure described in the previous section has a natural eetension to multiple

predictor variables. The piecewise linear basis functions analogous to (8) become

bk(x) = (Xj(k) - tk)+ (22)

where k, 1 :< k < K, labels the knots and j(k), I < j(k) :_ p. labels a predictor variable

corresponding to each knot. Each knot location tk is associated with a particular predictor variable,

j(k), and all of the predictor variables provide eligible locations for knot placement. Additive

modeling in this context can simply be regarded as a (univariate) smoothing problem with a

larger number (pN versus N) of ordinate abscissa pairs. The forward/backward knot placement

strategy, minimum span (with pN replacing .V), and model selection criteria airectly apply. as

do the updating formulae derived in Section 2.3 (reinitialized to zero for each new variable). The

resulting piecewise linear model

K

f(z) = ao + F ak(zx() - (231

can be cast into the form given by (2) with

fi, ,) = E a(z, - ", < I < p. 124,
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Note that the means of the individual (predictor) variable functions (24) can be considered arbitrary

for purposes of interpretation.

The corresponding piecewise cubic basis (17) is constructed in a manner analogous to that

for the smoothing problem (p = 1). The only difference is that the side knots t(k)_, t(k). (19) are

positioned at the midpoints between the central knots (tk) defined on the same variable. The end

knots (20) are positioned using the corresponding endpoints on the same variable. The resulting

basis functions Bk(z3 (k)) define individual variable functions analogously to (24)

f,(x,) = akBk(), 1 < i < P (25)

again with arbitrary means.

Although exceedingly simple. this method of additive modeling has some powerful character-

istics. The knot placement strategy considers each potential knot location in conjunction with all

existing knots on all the predictor variables - not just those defined on the same variable - when

deciding whether to add (or delete) a particular knot. At each point the forward stepwise strategy

decides (in a natural way) whether to increase the flexibility of an already existing variable curve

(24) (25) or whether to add another variable, either linearly or nonlinearly. Variable subset selec-

tion thereby occurs as a natural byproduct of this approach. Note that the smallest abscissa value

on each predictor variable is always made eligible for knot placement (irrespective-of the minimum

span value - Section 2.2) so that any predictor variable can potentially-enter in a purely linear way.

The additive modeling strategy outlined above places no special emphasis on linearity. A

purely linear relationship in any variable is represented by one of the eligible knot locations (the

first) on that variable. One can (if desired) place such special emphasis by requiring that the first

knot entered for each variable be at its smallest value. The price paid for this is increased variance

in estimating some monotone relationships and dramatically increased bias against non-monotone

relationships.

Our strategy does, however, place some special emphasis on monotonicity. Monotone trends

will enter before somewhat stronger highly nonmonotone relationships. Also. there is a slight

preference for certain types of monotone trends, namely those that start with a small slope. These

can be approximated with a single knot as can a purely linear trend.

This method of additive modeling is invariant to the locations and individual spreads of the

variables. Translating or rescaling each of the variables by a (different) constant factor will, in

principle, not affect the solution. If. however, the predictor variables have very large absolute loca-

tions (compared to their scales) and/or wildly different scales. there can be undesirable numericai
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consequences associated with the updating and least-squares fitting. In such cases (as with ordi-

nary linear least-squares regression) it is wise to center and/or rescale the predictor variables to

remove the large locations and/or wild scale differences before applying the modeling procedure.

The resulting solution is easily transformed back to the original variable locations and scales.

4.0 Confidence intervals

When attempting to interpret the individual predictor variable curve estimates, it is important

to have a notion of how far the estimate is likely to deviate from the true underlying (population)

conditional expectation. This can be quantified by the expected squared error

E[f,(xi) - f(xj)]2 = (f,*z() - Ef,(r)) 2 + Varf,(z.). (26)

Here fi'(xi) is the true population curve and f,(xz) is the estimate from the sample. The

expected values in (26) are over repeated samples of size N drawn from the population distribution.

For linear (nonadaptable) procedures (knots fixed in advance) and homoscedastic errors (1). one

can estimate the variance term in (26) through standard formulae for the covariances of the ak

appearing in (24) and (25) and an estimate of the true underlying error variance, &2. With adaptable

procedures such as ours this can be highly overoptimistic because it does not account for the

variability associated with the knot placement.

One way to mitigate this effect is t- inflate &2 to account for the additional degrees-of-freedom

used by the adaptive knot placement (total of three for each knot). Even this. however, does

not give completely satisfactory results. For example, the (constant) predictor variable curves

associated with no knots would be calculated to have zero variance. This is clearly not the case. In

addition, there is seldom reason to expect homoscedasticity. Even if one could accurately estimate

the variance it is, in any case, only one part of the expected-square-error. There is still the unknown

and potentially large bias-squared term in (26).

Bootstrapping (see Efron and Tibshirani. 1986) provides a means of estimating the variance of

the curve estimates (assuming only independence) and can give some indication of the bias as well.

This is, of course, at the expense of additional computing. However, the additive modeling proce-

dure described here is generally fast enough (see Section 2.3) to permit substantial bootstrapping,

and honest uncertainty estimates are usually worth it.

The basic idea underlying the bootstrap is to substitute the sample for the population and

study the behavior of estimates under repeated samples of size N drawn from it. In particular. we

can estimate the expected squared error (26) by

Erf,'(x,) - f(x,)' = EB[fL.t,)- f: "' ,. 271
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Here EB is the expected value over repeated "bootstrap" samples of size N drawn (with replace-

ment) from the data, and fiB) is the (ith) curve estimate for the bootstrap samples. In fact, one

can approximate the distribution of f (zi) - fi(x,) by that of fi(xi) - fiB)(.ri).

Our goal is to take maximal advantage of the flexibility of the bootstrap to estimate asymmetric

intervals about the curve that reflect the potentially asymmetric nature of the distribution of

f'(xi) - fi(zi). This can be due to either asymmetric error distribution or biased curve estimates

(or both). In addition, we wish our interval estimates to reflect (probable) heteroscedasticity of the

errors. To this end we repeatedly draw bootstrap samples (of size N with replacement) from the

data. For each such sample we perform the same modeling procedure as was applied to the original

data, thereby obtaining a set of curve estimates fAB)(xi), I < i < p. At each (original data) value.

xi, two averages are computed:

~zi) -E +[f,(xj) - f(B)(xl (28a)

'_(xi) =E(_)[f,(xj) - f(B)(Xi)] (280)

The first average (28a) is over those bootstrap replications for which f,(zX) - f,((z,) > 0, and the

second (28b) is over those for which f,(x,) - f(B)(X,) < 0. The individual averages so obtained

at each value of z,e2 (zi), are then smoothed against z using a simple (constant span) running

average smoother. The resulting smoothed estimates 2(z,) are then used to define confidence

intervals about the original data estimate f(zj):

= ,(x,) ± A (x,). (29)

In addition to assessing the variability of the individual predictor variable curve estimates

fi(xi), it is important to obtain a realistic estimate of the future prediction error. FPE, of the

entire additive model (2),
P

FPE = E[Y - f,()
2

Here the expected value is over the population joint distribution of the response and predictor

variables. Sample reuse techniques such as bootstrapping (Efron. 13831 and cross-validation (Stone.

1974) provide a variety of such estimates. Of these, the so-called -632-bootstrap" has shown

superior performance in several simulation studies (Efron. 1983. Gong. 19S2. Crawford. 19S6).

This estimate is a convex combination of two different estimates

FPEs32 = 0.632FPE\B - 0.36S.ASR. 30
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The second, ASR, is the average squared residual corresponding to the original data fit. The first

estimate, FPE\B, is obtained from bootstrap sampling. As a consequence of the random nature of

selecting observations for the bootstrap samples, a (different) subset of the observations will fail to

be selected to appear at all in a particular bootstrap sample. On average, 0.368 N data observations

will not contribute in this way to a bootstrap sample. Each time an observations does not so appear,

its prediction error (squared) is computed, based on the model estimated from the corresponding

bootstrap sample from which it is absent. The quantity FPE\B is the average of these prediction

errors over all such left out observations throughout the entire sequence of bootstrap replications.

The bootstrapping procedure outlined above simulates situations where the response and pre-

dictors are both random variables sampled (independently) from some joint distribution. That is,

if another sample were to be selected, different values of the predictor variables as well as the re-

sponse would be realized. Therefore, the resulting confidence interval and FPE estimates are not

conditional on the design (realized set of predictor values). This is appropriate in most observa-

tional settings. There are situations, however, where the design is presumed to be fixed. That is,

every replication of the experiment results in an identical set of values for the predictor variables

and only the responses are random. Bootstrapping (as outlined above) will tend to over estimate

both the confidence intervals and the FPE in fixed design situations (just as estimates conditioned

on the design underestimate them for observational settings). Therefore, if the design is fixed these

bootstrap estimates should be regarded as conservative.

5.0 Simulation studies and data examples

In this section we compare the technique outlined in the previous sections ! referred to for identi-

fication as the "TURBO" smooth/model) to some other methods commonly used for smoothing and

additive modeling through a limited simulation study and application to data. The goal s to identify

those settings in which this procedure can be expected to provide good performance when compared

to existing methodology. For the smoothing problem (p = 1) we compare with smoothing splines

(Reinsch, 1967), a popular nonadaptive local averaging method, and a recently proposed adaptive

span smoother, "SUPER SMOOTHER". (Friedman, 1984). With smoothing splines the rough-

ness penalty was automatically chosen through generalized cross-validation (Craven and Wahba.

1979). For additive modeling we make comparisons with the projection selection/ACE approach

using SUPER SMOOTHER. In all examples, the knot placement increment is given by 1 14) with

a = 0.05.
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5.1 Smoothing pure noise

This is a simulation study to compare how well these three smoothers estimate a constant

function in the presence of homoscedastic noise. That is, how much structure do they estimate when

there is no underlying structure in the population? A set of response-predictor pairs (z,, yj), 1 <

i < N, were generated, with 0 < x < 1 randomly sampled from a uniform distribution, and the

yi drawn from a standard normal distribution. Figures la, lb, and ic show a scatter plot of one

such sample (N = 20) with the corresponding TURBO, smoothing spline, and SUPER smooths,

respectively, superimposed. The TURBO curve estimate is seen to be a constant (no knots) equal

to the sample response mean. The smoothing spline and SUPER SMOOTHER estimates show a

gentle dependence on x.

Since one cannot discern expected performance based on one realization, we study average

performance over 100 such realizations, for each of N = 20 and .V = 40. The results are shown

in Figures Id and le respeLtively; for the larger sample size the errors are generally smaller, but

the qualitative comparisons are the same. In both cases the average absolute error is plotted as

a function of abscissa value. (For the TURBO smoother, the piecewise linear and cubic smooths

give almost identical results.) The TURBO smoother (solid line) is seen to give uniformly smaller

average error than the other methods, though of course this overall performance is mostly due

to the relative amount of smoothing chosen (automatically) by the method rather than to the

choice of method itself. Perhaps of more interest is the uniformity of the error across the range

of observations; for this problem in particular, TURBO seems not to exhibit large error near

the ends of the interval ("end effects") associated with the other methods. The especially poor

performance of SUPER SMOOTHER (dashed line) in very high noise environments has been

noted before (Breiman and Friedman, 1985). It is also known, as most easily seen by considering

the "equivalent kernel" formulation discussed by Silverman (1984), that the smothing spline will

have higher variance near the ends. Also, the smoothing spline can be affected by bias effects if the

true underlying curve does not satisfy appropriate boundary conditions (see Rice and Rosenblatt.

1983); Agarwal and Studden (1980) showe'd that these end bias effects are not felt if one uses

piecewise polynomial models with fixed knots, but since the underlying model is constant in thi-

case, the bias effects are not relevant. It is clear that further theoretical work will be required to

understand TURBO's apparent improvement in boundary behavior over other methods.
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5.2 Smoothing a monotonic function

Our next example increases the complexity of the problem slightly. Here N = 25 response-

predictor pairs (x,, yi) were generated according to the prescription

yi = exp(6x,) -r, . )31

with the xi randomly drawn from a uniform distribution in the interval '0. I' and the -., are drawn

from a (heteroscedastic) normal distribution

r .V(0,[100(1- )]X) 32)

In this example the curvature of the true underlying conditional expectation is increasing with

abscissa value and the noise is heteroscedastic with standard deviation decreasing with abscissa

value.

Figure 2a shows a scatter plot of such a sample superimposed with both the piecewise linear

and piecewise cubic TURBO smooths and the :rue underlying conditional expectation, expi6z,.

Figure 2b and 2c show the corresponding smoothing spline and SUPER smooths. In this case.

the piecewise cubic TURBO estimate gives a slightly better fit than the piecewise linear to the

sample ias weil as the true underlying curve'. The smoothing soline estimate exhibits considerable

variability in the high noise region and the SUPER SMOOTHER somewhat less.

In order to study expected performance. L00 replications , 25 observations each were generated

according to (31). (32). and fit with the three smoothing methods: piecewise cubic TURBO model.
smoothing splines, and SUPER SMOOTHER. Figure 2d plots their average absolute error. fx:,-

expiGzx:. as a function of abscissa value. z. In the high noise region - < 01.2 both the smoothing

spline f,lotted line: and SUPER SMOOTHER 1dashed line) exhibit large ,rror associated with

the high variance of their estimates. In the ntermdiat- region 0.2 < < .9 both 'he TURBO

solid line, and SUPER smoothers have ccmparabie ,-rformance. In thkle low noise high curvair

extreme, x > 90., all three methods proluce .:onsidprable ipeed -rror uias, .vith The C:PKR

SMOOTHER degrading 'be least. ,.-r mnost of -h reion the ionadaprable rnoothinl ipiine

met tod giv'es relati'velv poo r pert,-rmnanv,. This migh:t boxpee I o i en., i,,: ".' iurvatur an,

:i3'e eove are varying .0.'"o-v ,';tl~io .~ t i tai a.:Iu r, o . s .tpu ropr:.se.

5.3 A difficult smoothing problem
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distribution in the interval [-0.2, 1.0] and the yj given by

Yi in2rl x,2]+ ,jU< x, <1

with the ci randomly generated from

.V N[0, max 2 (0.05, X'].

The second derivative of the underlying conditional expectation changes sign four times and is

infinite at x = 0. The standard deviation of the additive noise is small and constant for X < 0.05,

and then increases linearly with x. Figure 3a shows a scatter plot of such a sample. Figure

3b superimposes the piecewise linear and cubic TURBO smooths along with the true underlying

conditional expectation. Figures 3c and 3d show respectively the- corresponding smoothing spline

and SUPER SMIOOTHER smooths. All but the piecewise linear estimate have a downward bias

at the derivative discontinuity. Both TURBO smooths have a downward hias at the minimum.

whereas the smoothing spline and SUPER smooths have an upward bias. The smoothing spline

estimate exhibits considerably more variation in the higher noise regions. The piecewise cubic

TURBO smooth again gives a slightly better fit to the data than does the piecewise linear.

As in the previous examples, we compare expected performance of the three methods over 100

replications of .50 observations each. Figure .3e shows the average absolute error (from the true

underlying conditional expectation) for the piecewise cubic TURBO smooths, smoothing splines.

and SUPER SMOOTHER. In the higher noise regions (XY > 0.25) the TURBO and SUPER

smoothers are seen to have comparable error, but in the lower noise high curvature region .rX < 0.23)

the SUPER SMOOTHER exhibits about 20% higher accuracy. It has considerably less bias at

the derivative discontinuity and the minimum points. Smoothing splines exhibit relatively poorer

performance over almost the entire interval. Again. tisis might have been expected since this is

a highly heteroscedastic situation with varying curvature. Nnnadaptable smoothers must choose

a compromise smoothing parameter for the entire region, %%'iereas the adaptable procedures Canl

adjust the span to try to account for such effects.

5.4 Additive modepling with pure noise.

Since it is as important for a method to riot find predic-t i% si riicure when it is absent, as it is

to find it when present. we first studyv the perfirmarnce ato additiye mo1Dailiniz proced ore -,khen

here is no -nrpdic:tip relationshipt h..veen tie -sponse and )r-ioictor . Two' -i mui.utuon . 'perimonts

were performed. In tii.p frst. ',00 t'-pliatiotis of a samrple of iz N' = -0 %v wr- -- neratec1. The

: _ Wk



responses were drawn from a standard nor-nal distribution. There were , =10 predictor variahip.

each independently drawn from a uniform distribution in the interval [0. 1]. The TURBO modeling

procedure was applied to each of these 100 replicated samples. In 67 replications no knots were

placed on any of the ten predictors. The estimated response function was taken as the sample

rk ponse mean. In 24 replications one knot was placed and in 9 cases two knots were used. Thus,

two thirds of the time the TURBO model reported no predictive relationship. In the rest of the

cases it reported a small one. Table I summarizes the distribution of both the sample multiple

correlation (R') between the response and the estimated model, and the root mean squared distance

(ESE)"/2 of the estimated model from th ! truth. f(x1 ...x 0) =0.

For comparison we also applied to these data sets the projection selection procedure (Friedman

and Stuetzle, 1981), or equivalently, the ACE pr ,cpdure with the response transformation restricted

to be linear (Breiman and Friedman, 1985), using the SUPER . OOTHER fFriedman. 1984).

The corresponding distribution of R' and (ESEn)ro 2 are also summarized in Table 1. In contrast

to the TURBO model, this method is seen to seriously overfit the data as reflected in the high

values of both quantities. The propensity of ACE (based on the SUPER SMOOTHER) to overfit

in Low signal to noise situations was discussed by Folkes and Kettenring ( 1985). and Breiman and

Friedman (1985).

A second simulation experiment was performed, using the same setting but increasing the

sample size of each replication to N = 100. The TURBO model placed no knots 63 times. The

frequenc,y'of one through five knots were, respectively 26. 6. 3. 1. 1. The corresponding gdistribu-

tions for both methods are shown in Table 1. The increased sample size is seen to improve the

performance of both methods but the qualitative aspects of their comparison are the same as with

the smaller (N = e50) sample size. The TURBO modeling procedure is seen to be fairly conserva-

tive. It should be noted that the tendency of the ACE method to drastically overfit in low signal

to noise small sample settings is not a fundamental property but is mainly a consequence of its

implementation using the Uighlx flexible SUPER SMOOTHER.

5.5 A highly structured additive model

This example is intended to contrast with the previcds one. As in the previous example her

are p = 10 predictor variables each independently generated from a uniform distribution on .0e 1.

Two simulation experiments of 100 replications each were performed with n and N 100.

The response variables were generated br

tions fo both mehods ar shown i Table ..............- sz i sentoimroe h

pefomaceo bthmehosbu te u~ttie spct f her omaisn reth am - wt



with the ej independently drawn from a standard normal distribution. The function f was taken

to be
4

r'(xi ... Xto) = O-le 4 x
, + 0.05 + 3X 3 + 2X 4 + X 5 .

In this case the signal to noise ratio (standard deviation of f') is 2.47. The true underlying condi-

tional expectation is additive in the ten predictor variables. The relationship is highly nonlinear in

the first two, linear with decreasing strength in the next three, and constant (zero) in the last five.

Figures 4a - 4e show the piecewise linear and cubic curve estimates (24), (25) for the first five

variables in the first replication of N = 50. Also, superimposed on the figures is the true underlying

function for the corresponding variable (solid line), and with the errors , added to it (dots). As can

be seen the TURBO model placed one knot on X 1 , two on X 2 , and one each on variables X3, X 4 ,

and X5 . No knots were placed on the last five predictor variables. Both the piecewise linear and

cubic models fit the data with R2 values of 0.93. The root mean-squared error of the piecewise

linear model from the true f'(X ... X10 ) was 0.45, whereas for the corresponding piecewise cubic

it was 0.47.

More important than performance on a single sample is average performance over 100 inde-

pendent replications of this situation. Table 2 summarizes the results for piecewise cubic fitting.

The results shown in Fig. 4 (based on the first replication of the 100) are seen to be somewhat

more favorable than those on the average. A second simulation experiment with 100 replications of

N = 100 observations each was also performed. These results are summarized in Table 2 as well.
The ACE/SUPER SMOOTHER procedure was applied to the same sets of replicated data with

the results also shuwn in Table 2.

Comparing the results, the TURBO modeling procedure is seen to exhibit substantially better

performance in terms of root mean squared error. The effect is. however, less dramatic than in

the pure noise case. On average, ACE/SUPER SMOOTHER fits the data sample 3.7 times more

closely than the TURBO model for N = 30. For N = 100 this factor is l.S. This overfitting results

in an increased median modeling error of 16% for N = .50 and 507 for .V = 100. On the other hand.

the TURBO model has a tendency to be conservative and under fit the data, producing estimates

that are sometimes ovtrly smooth (too few knots). This has an interpretational advantage and a

predictive advantage when the curvature variation of the true underlying conditional expectation

is reasonably gentle. This example, however, simulates a situation in which that variation is fairly

dramatic and the advantage of TURBO modeling procedure i in rrms of expected squared error i

is thereby somewhat reduced.
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5.6 Molecular quantitative structure - activity relationship.

We illustrate here TURBO modeling on a data set from organic chemistry (Wright and Gam-

bino, 1984). The observations are 36 compounds that were collected to examine the structure

activity relationship of 6-anilinouracils as inhibitors of Bacillus sufttilis DNA polymeraze III. The

four structural variables measured on each compound are summarized in Table 3. The response

variable is the logarithm of the inverse concentration of 6-anilinouracil required to achieve 50% in-

hibition of enzyme activity.

TURBO modeling applied to these data placed four knots: one on the first variable, two on

the second, and one on the third. The e2 = 1 - R 2 for the piecewise linear fit was 0.12. while for the

piecewise cubic it was 0.11. The corresponding 632-bootstrap estimates (30) were 0.23 and 0.22.

Figures 5a-.d show the piecewise cubic curve estimates f,(.r), i = 1,4, along with the bootstrap

confidence intervals (29). The data points (dots) on the figures are the scaled residuals from the fit

added to the curve at each abscissa value (component plus residual plot). The scale factor is the

square root of the ratio of the 632 bootstrap estimate to the resubstitution e2 . The curve estimates

on the first three predictors are all seen to be fairly nonlinear, especially the second one.

ACE/super smoother was also applied to these data. Tlve resubstitution e2 was 0.054 while

the 632-bootstrap estimate was 0.29. As in the simulated data example (Section 4.5). ACE/Super

smoother is seen to fit the data more closely than the TURBO model, but the resulting overfit

results in inferior future prediction error in this case.

5.7 Air pollution data.

This data set consists of daily measurements of ozone concentration and eight meteorological

variables for 330 days of 1976 in the Los Angeles basin. Table 4 describes the variables. These

data were introduced by Breiman and Friedman (1985) to illustrate the ACE procedure. They

were also analyzed by Hastie and Tibshirani (1984) using their Generalized Additive modeling

method (see also Hastie and Tibshirani, 1986). In contrast to previous examples this is a large

(N=330), complex. and not very noisy data set. One might therefore expect that the simple

TURBO modeling procedure would be at a disadvantage when compared to the more sophisticated

approaches that have been applied to these data.

Applying the TURBO model resulted in ten knots being placed: one each on variables 1. 4. 5.

and 6. and two each on variables 3. 1. and 9. The resulting resubstitution e2 was 0.20 for both the

piecewise linear and cubic fits. The corresponding 632-bootstrap estimates 120 replications) were

0.21 for both. The piecewise cubic individual variable curve estirmates. f',, z,. < < 9.'25) are

27



shown in Figs. 6a-6i, along with their bootstrap confidence intervals (29) and (scaled) residuals.

Exact comparison with the ACE results in Breiman and Friedman (1985) is not possible since

they applied ACE in a mode that estimates an optimal (minimum e2 ) response transformation as

well. The resulting respone estimate was, however, not too far from the identity function so that a

rough comparison is possible. They applied a variable based forward stepwise procedure, selecting

five variables. Their resubstitution e2 for the optimal response function was 0.18. The variables

that were selected and the corresponding curves are fairly consistent with (but not identical to) the

TURBO model results. Generally, the TURBO curves are a bit simpler than the corresponding

ACE/SUPER smoother estimates. Since bootstrapping or cross-validating the forward stepwise

ACE procedure would be prohibitively expensive, no estimate of (honest) future prediction error

could be given.

Hastie and Tibshirani (1984) also analysed these data. Their Generalized Additive Modeling

procedure as applied in this setting is equivalent to the ACE method with the response function

constrained to linearity. Therefore we can make direct comparison with their results. Hastie and

Tibshirani did not employ SUPER SMOOTHER. but rather a nonadaptable local linear smoother

with constant span. With all nine predictors in the regression function they obtained an e2 of 0.20.

With the same subset of variables as used by Breiman and Friedman (1985) the e2 was 0.22. Hastie

and Tibshirani (1986) provide a method of estimating the equivalent degrees-of-freedom used by

their fitting process. This estimate accounts for the flexibility associated with the resulting smooths

but does not account for the (nonlinear) span selection and variable subset selection process. They

report 21.8 degrees-of-freedom for their fit with all variables and 12.4 for the five variable subset.

The corresponding degree-of-freedom count for the TURBO fit would be 11 (constant term plus

coefficients for ten knots).

6.0 Discussion

The examples of Section 5 indicate that the smoothing method outlined in Section 2, and

the corresponding additive modeling procedure described in Section 3. are competitive with the

techniques to which they were compared. They seem to have substantial advantage in situations

with low sample size and high noise, where the underlying functions are fairly simple. In this context

a simple function is one that can be reasonably well approximated by a piecewise linear function

with few (judiciously placed) knots. This was the case in the -xampl-s of Sections .5.. 5.2. .5.4. .5.5.

and .5.6. Our procedures appeared to have similar performancp to the 'orrosponding competitors

in large sample low noise situations, again with fairly iniple i,idrlyinq functions , Section .7

2S



The example in Section 5.3 represented a moderate sample size situation with both high and low

noise regions (strong heteroscedasticity) and a complex underlying function. In this particular case

SUPER SMOOTHER appeared to perform somewhat but not dramatically better.

FORTRAN programs implementing the procedures herein described are available from the

authors.
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Table 1

Comparison of TURBO and ACE additive modeling of pure noise (Section 5.4). The 5, 50

and 95 percent points are given for the distribution of the multiple correlation R2 (resubstitution).

and the root expected squared error (ESE) / 2 .

R2  (ESE)' / 2

.05 .5 .95 .05 .5 .95

N=50

TURBO 0.0 0.0 0.21 0.02 0.18 0.50

ACE 0.74 0.91 0.97 0.68 0.85 1.00

N = 100

TURBO 0.0 0.0 0.12 0.008 0.12 0.41

ACE 0.49 0.70 0.86 0.55 0 69 0.89

Table 2

Coml arison of TURBO and ACE additive modeling in a higher signal to noise situation

(Section 5.5). The 5, 50, and 95 percent points are given for the distribution of the multiple

correlation R 2 (resubstitution), and the root expected squared error (ESE)'/ .

R
2  (ESE 1/2

.05 .5 .95 .05 .5 .95

V=50

TURBO 0.79 0.86 0.93 0.34 0.75 0.99

ACE 0.97 0.99 L.0 0.68 0.87 1.00

N = 100

TURBO 0.84 0.87 0.91 0.31 0.4,', 0.62

ACE 0.93 0.96 0.99 0.60 0.72 0..5
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Table 3
Variables associated with molecular quantitative structure-activity data example (Section 5.6).

X meta substituent hydrophobic constant

X 2  para substituent hydrophobic constant

X 3  group size of substituent in meta position
X 4  group size of substituent in para position

Y -logarithm of the inverse concentrations of

6-anilinouracil required to achieve 50%

inhibition of the enzyme.

Table 4

Variables associated with the air pollution data example (Section 5.7).

-, Vandenburg 500 millibar height

X 2  humidity

X 3  inversion base temperature

N 4  Sandburg Air Force Base temperature

X,5  inversion base height

.6 Daggot pressure gradient

X- wind speed

X 8  visibility

.Xg day of the year

Y' Upland ozone concentration
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Appendix 6

A smoothed EM algorithm for the solution of
Wicksell's corpuscle problem.

by

J. D. Wilson
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An evaluation of the ICM algorithm for image reconstruction.
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An Evaluation of the ICM Algorithm for Image Reconstruction

R. K. GLENDINNING

School of Mathematical Sciences,University of Bath, Bath BA2 7AY, U.K.

We examine the properties of Iterated Conditional Modes (ICM) estimation for

a number of synthetic binary images using simulation.

KEY WORDS : Ill-posed problem;image reconstruction;1CM; Simulated

Annealing;imoothing parameter; neighbourhood system ;Monte-Carlo.

1. INTRODUCTION

In the last few years considerable interest has been shown in the problems

posed by the analysis of images corrupted by random noise. The reconstruction

of such images leads to special difficulties as it is an ill-posed problem ( in the

sense described by O'Sullivan, 1986 ). Typically the reconstruction of an array

of pixels will have as many parameters as observations. A number of tech-

niques have been proposed which solve ill-posed problems by restricting the

class of admissible solutions,see Marroquin,Mitter & Poggio (1987). This is

achieved by introducing a priori knowledge about admissible solutions.

. Much interest currently centres on techniques which incorporate knowledge

about the underlying image using Bayesian methodology, See Geman & Geman

(1984) ; Kashyap & Lapsa (1984). These techniques assume that the underly-

ing scene can be adequately described as a realisation from a prescribed Mar-

kov random field. Motivated by this approach Besag (1986) introduced a tech-

nique known as ITERATED CONDITIONAL MODES (ICM). This iterative

procedure incorporates knowledge about the underlying scene by the choice of

a 'neighbourhood system' ,weight function and smoothing parameter. Broadly



speaking this method exploits the tendency of adjacent pixels to have the same

colour. A similar approach based on spatial auto regression is described in

Woods,Dravida & Mediavilla (1987).

In this paper we use simulation to evaluate the performance of ICM in

reconstructing binary ( black-white ) images. The reconstruction of binary im-

ages is of considerable practical importance as many problems in object recog-

nition and manipulation fall into this category. For simplicity we suppose that

the underlying scene can be partitioned into an array of pixels ( picture ele-

ments ) which are uniquely coloured black or white. At each pixel we observe

a signal which depends on its colour. We consider the case where each signal

is additively corrupted by independent normally distributed noise. These are

highly unrealistic assumptions as they ignore the problems associated with

mixed pixels, signal spread etc. However we believe that the study of ICM in

this simplified setting will give valuable insight into its behaviour in more com-

plex situations.

In section 2 we describe the basic ICM algorithm and recall some basic

facts about Markov random fields. The synthetic scenes used in this study are

described in section 3. In section 4 we examine the influence of the neighbour-

hood system and weight function on the quality of our reconstructions. The

choice of smoothing parameter is discussed in section 5. We are particularly in-

terested in identifying properties of the underlying scene which influence the

value given to 3 (the smoothing parameter). Some distributional properties of

ICM reconstructions are discussed in sec~ion 6. ThL numerical performance of

the basic 1CM algorithm is discussed in section 7. We describe several

-modifications of the t)asic algorithm which enhance its efficiency. Our findings

are summarised in section 8.

The prcblem of restoring corrupted images has a long history in the image

processing literature, where a number of techniques of varying sophistication

have been suggested, see Bovik,Huang & Munson (1987) or Rosenfeld & Kak

(1982). A comparison of ICM with the multitude of competing techniques is
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not attempted in this paper.

2. THE 1CM ALGORrHM AND MARKOV RANDOM FIELDS

Let W be a rectangular window in the plane which is partitioned into an

(m x n) array of rectangular pixels of equal size. We assume that each pixel

can be uniquely coloured. The available colours are labelled (1,2,...,c). In this

paper we restrict attention to scenes with two colours which we call black and

white. The colour of the (i j)' pixel is denoted by xij. We refer to (xij) as the

true or underlying scene. Suppose we observe an array of signals (yij) generat-

Yij = l.(Xij) + ij, (2.1)

where (ei,) are independent and identically distributed random variables and

gt(.) is a function of xij only. The object of image analysis is to estimate the

true or underlying scene (xij) from (yij). In this paper we consider real-valued

signals only. Models of this form are not canonical in the study of corrupted

images and the reader is referred to Besag (1986) for a discussion of alternative

models.

At first sight the natural way of estimating (xij) is by maximum likelihood.

In this approach we find (xij) which maximises

,n n
I ((Yij) I (xij)) = 1f (Yij Ix ). (2.2)

i=lj=l

where f (yij I xj) is the fully specified density function of Yi. conditional on xij.

The estimates produced by this approach are usually unsatisfactory as (2.1) has

as many parameters (xij) as observations. To improve the situation Geman &

Geman (1984) and Besag (1986) introduce information about (xij) into the

estimating procedure. This is achieved by regarding (xij) as a realisation from

a Markov random field ( MRF ) . A detailed account of the salient features of

MRF's can be found in Geman & Geman (1984) ; Besag (1974,1986) or

Suomela (1976). We briefly outline the main proper-ties of MRF's relevant to
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the discussions in this paper.

For each pixel (ij) we associate a set of pixels Fij) , not including (ij)

called the neighbourhood of (ij). The collection of sets (F(ij)) is called a

neighbourhood system and satisfies the condition

(Fq)cF(ij)c*(i j)G F(pq).

Then (xO1 ) is a MRF if

(1) P(xij I(x,p*i,q;j)) = P(xj Ixq,(pq) e F(jj)) ,

(2) P ((xij ) ) > 0,

where P ((x1j)) is the probability associated with the realisation (xij). Condi-

tions I and 2 impose severe restrictions on P (.). Valid forms of P (.) are given

by the Hammersley-Clifford Theorem, see Besag (1974) or Suomela (1976).

We follow Geman & Geman (1984) and adopt a Bayesian approach where

we estimate (xij) from its posterior distribution

I ((Yii) I (Xij))P ((xij)). (2.3)

A plausible estimate of (xg1) is the value of (xij) which maximises (2.3). This is

the MAP estimate of (xij). Geman & Geman (1984) use simulated annealing to

maximise (2.3). Van Laarhoven & Aaris (1987) give a comprehensive

description of simulated annealing and its application to image analysis. Note

that Greig,Porteous and Seheult, in the discussion of Besag (1986) show that

the MAP estimate of a binary scene can be calculated exactly. It is not known

whether the MAP estimator has any desirable properties in this context.

Besag (1986) introduces an alternative estimator of (xi1 ) known as

ITERATED CONDITIONAL MODES (ICM). This algorithm converges to a

local maximum of (2.3). Let (,%j) be the current estimate of (xij). For each

pixel we find the value of xq which maximises

f (Yij Ixjj)P (x I (iy)), (2.4)

where P (xj I(fj)) depends on the neighbours of (ij) only. Consider an exam-



pie. Let (xqj) be a binary scene and (eu) an array of independent normally dis-

tributed random variables with zero mean and variance a2. We represent our

knowledge of (xq) by a MRF with neighbourhood system

(F()=((i -1,j ),(i +Ij),(i j-1),(ij+l))) and conditional probabilities
exp(puij (k))

P (xij =kI (xp i)) = exp(3uj (0)) + exp(piju(1)) , k=0,1, (2.5)

where the weight function uij (k) is the number of neighbours of xii with colour

k. The value of xq which maximises (2.4) minimises

(2, 2)'(y 1 _ p.(x ))2 - paj (x,,), (2.6)

where aij(xi) is the number of neighbours of (i j) which have.colour xij

under the current estimate (1n). We call 1 the smoothing parameter. The exten-

sion of (2.6) to non-gaussian noise is immediate.

Notice that (2.6) is in the form of a penalised likelihood and may be inter-

preted in this way without recourse to Bayesian arguments. Note that ICM and

MAP are not equivalent for most scenes. Typically smaller values of 13 (rela-

tive to ICM) are required for MAP, see Greig,Porteous and Seheult,in the dis-

cussion of Besag (1986). The relationship between techniques like ICM and

other regularisation procedures is discussed in Titerington (1985).

3. DESCRIPTION OF THE SIMULATION STUDY

Seven scenes of varying complexity were constructed by partitioning the

unit square into 104 square pixels of equal size. The colour of each pixel was

assigned to the colour of its mid-point. In this study we use black and white

scenes only.

To identify properties of ICM more easily we restrict attention to simple

synthetic scenes which cover a small alphabet of forms rather than use naturally

occurring images. Five simple geometric scenes are displayed in figures I to 5.

The remaining scenes, MRF2 and MRF3 ( figures 6 and 7 ) are realisations



from a Markov random field with prescribed number of black pixels (approx

50%). MRF2 and MRF3 were constructed using the algorithm described in

Cross & Jain (1983). Notice that we are sampling from the conditional distribu-

tion of the prescribed MRF. We believe that realisations constructed in this way

capture much of the local structure of the unconditional model. In the next sec-

tion we describe three Markov random fields, ( Models LI and III) which are

commonly used in this context. MR.F2 is drawn from Model II with 0=0.5 and

MRF3 from Model II with [0.75.

We construct an array of signals (yij) using (2.1) with

p.(black )-l , g(white )=0 and (eij) an array of independent normally distributed

random variables with zero mean and variance a .The maximum likelihood

reconstruction is calculated and used as the initial state for the ICM algorithm.

This iterative procedure is terminated after twelve iterations. Typically conver-

gence occurs after six iterations. This process is repeated fifteen times for each

combination of parameter and underlying model. The efficiency of this algo-

rithm is discussed in section 7.

Many criteria can be used to evaluate reconstructions. Essentially its choice

depends on the image characteristics of greatest interest. In this paper we use

the number of misclassified pixels as an appropriate measure. The suitability of

this criteria has been the subject of much recent debate, see the discussion of

Besag (1986). We point out the limitations of this criteria where appropri-

ate. Figs 1-7

here

4. THE CHOICE OF MODEL.

In this section we examine the effect of choosing three different weight func-

tions in (2.6). The choice of 13 is discussed in section 5. In a Bayesian frame-

work we are modelling our knowledge of the uncorrupted scene by a MRF with

prescribed structure. Cross & Jain (1983) show that simple MRF's can
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generate a wide variety of binary scenes. The problem of choosing suitable

MRF's to model specific scenes is not well understood,see Kashyap &

Chelappa (1983) , Enting & Welberry (1978) and Pickard (1987). The last two

authors discuss parameter estimation for Markov random" fields. An additional

complication arrises when our knowledge about the underlying scene is impre-

cise or difficult tr, model by a MRF. The success of this approach rests on the

assumption that only certain modest properties of our 'prior' are important.

Some tentative observations on the robustness of ICM reconstruction to model

specification are given in sections 4 and 5.

In this section we use three different MRF's to describe our knowledge

about the scenes presented in figs I to 7. We examine the misclassification rate

achieved by ICM using each model and several values of the parameter 03. The

models used are as follows:

MODEL I: A first order neighbourhood.

F(i.j ) =((i-[,J),(i+l1j),(i j+l),(ij-1) )

P(Xj =k IF ) = exp(ou 1j(k)) k=O,. (4.1)

i (id exp(3uii (0)) + exp(puii (1))

where

Upq(k) = , when (p,q)EF(ij) and xp =k, (4.2)

and zero otherwise.

MODEL II: A second order neighbourhood.

P(x-j),(F(j) by( ),nd+(4.)

P (xii =k I F (i.)) is given by (4. 1) and (4.2).



-8-

MODEL I : As for U with down weighted diagonals. F(iU) as for the

previous model and P(x,=k IF(1j)) given by (4.1) with

up(k) = 1 , (pq)((i+lj),(i-tj),(ij+1),(i j-1)) and x = k.

upn(k) = 2' , (p,q)E((i-lj+l),(i+lj-1),(i+lj+l),(i-lj-1)) and xp = k.

up,(k) = 0 otherwise. (4.3)

There are conflicting opinions as to whether models should be modified for pix-

els adjacent to the window,see Ripley (1984). In this study we use the

unmodified models I,1I and IMl. The effects of modification appear small rela-

tive to the standard errors encountered in this study. Cross & lain (1983) show

that models like II and Ml can be used to construct a wide variety of binary

scenes.

TABLE I

Comparison of models I, U1 and ll
Smallest average percentage of misclassified pixels

13 taking values in (0.25,0.5,0.75,1.0,1.25,1.5) for Models II and MI
13 taking values in (0.5,1.0,1.5,2.0,2.5,3.0) for Model I
The standard error of this estimate is given in brackets

32 = 0.5 ML 15.87
Model

Picture i n III
BCIR 2.24 (0.07) 0.55 (0.04) 0.60 (0.04)

CROSS 2.66 (0.05) 1.00 (0.07) 0.98 (0.06)
TWO 2.40 (0.09) 1.11 (0.05) 0.97 (0.06)

MANY 3.94 (0.10) 2.41 (0.07) 2.27 (0.08)
VMANY 8.40 (0.13) 7.11 (0.10) 7.24 (0.10)

MRF3 6.81 (0.07) 4.92 (0.09) 4.98 (0.10)
MRF2 9.50 (0.14) 7.85 (0.09) 7.98 (0.09)

= 1.0 ML 30.85
Model

Picture I IH II
BCIR 6.33 (0.16) 1.32 (0.07) 1.32 (0.05)

CROSS 6.85 (0.22) 2.07 (0.12) 2.04 (0.10)
TWO 6.88 (0.13) 2.55 (0.08) 2.41 (0.08)

MANY 8.84 (0.15) 4.52 (0.16) 4.55 (0.12)
VMANY 15.11 (0.22) 13.44 (0.13) 12.92 (0.17)

MRF3 12.13 (0.16) 8.16 (0.19) 8.09 (0.17)
MRF2 14.92 (0.20) 11.40 (0.23) 11.34 (0.22)
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Each scene described in figs 1 to 7 is reconstucted using models I,1I and

III with various values of a2 and P. For models H and III we find the value of

3 in the set (0.25,0.5,0.75,1.0,1.25,1.50) which gives the smallest average

misclassification rate. For model I we consider values of 13 in the set

(0.5,1.0,1.5,2.0,2.5,3.0). We choose different values of j3 for model I as there

is strong empirical evidence that the 'optimal' value of 3 lies in this range for

the scenes c6nsidered. In Table I we display the smallest average

misclassification rate for a2 = 0.5 and 1.0. Similar results were obtained using

different values of a2. Notice that ICM is superior to the ML estimate for all

scenes. It is readily apparent that model I is vastly inferior to I and III for all

scenes considered. Model II is marginally superior to model H in the majority

of the scenes. In their study of edge penalties Brown and Silverman (1987)

present an argument which supports the use of model III in preference to

Model H for the majority of scenes. Recall that MRF2 and MRF3 are realisa-

tons from a Markov random field with a fixed number of black pixels. Using

the 'correct' neighbourhood system appears to have little effect on the quality

of the reconstruction.

As the 'optimal' 3 will usually be unknown we examine the average

misclassification rates for model I1 and III for several values of 3. The average

percentage of misclassified pixels is presented in Tables II to VII for various

values of (3.

In Tables U and III we display the average percentage of misclassified pix-

els using models II and III for various values of 3 and a2=0.5. Similar resuits

were obtained for other values of o2. There is strong evidence to suggest that

the 'optimal' value of (3 using model II is larger than the corresponding value

for model U. In figure 15 we compare the average percentage of misclassified

pixels when MRF3 is reconstructed using models II and III (a2=0.5). We plot

the average percentage of misclassified pixels using model II against 3. For

Model [II we plot the corresponding percentage against (1/1.17)3. From this

figure we see that a useful first approximation is to multiply the value of (3 used
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with model II by 1.17 when using model M1. This ensures that the second term

in (2.6) has the same value for both models when aiq (xij)=8.

TABLE H

Average percentage of misclassified pixels using Model II
Standard errors in brackets

Optimal reconstruction is bold faced

2= 0.5

3 BCIR CROSS TwO MANY VMANY MRF2 MRF3
0.25 4.53 4.75 4.96 5.91 9.78 9.86 7.74

(0.10) (0.11) (0.09) (0.13) (0.09) (0.14) (0.12)
0.50 0.80 1.02 1.30 2.41 7.11 7.85 4.92

(0.03) (0.04) (0.04) (0.07) (0.10) (0.09) (0.09)
0.75 0.55 1.00 1.11 2.48 8.04 8.44 5.13

(0.04) (0.07) (0.05) (0.09) (0.19) (0.10) (0.07)
1.00 0.63 1.01 1.20 2.53 9.56 9.01 5.48

(0.04) (0.05) (0.07) (0.09) (0.18) (0.09) (0.08)
1.25 0.75 1.22 1.44 3.19 11.60 9.83 6.16

(0.05) (0.08) (0.10) (0.10) (0.25) (0.12) (0.12)
1.50 0.70 1.27 1.78 3.61 13.19 10.40 6.77

(0.03) (0.08) (0.12) (0.12) (0.28) (0.13) (0.12)

TABLE II

Average percentage of misclassified pixels using model III
Standard errors in brackets. Optimal reconstruction is bold faced

Y2 = 0.5
BCIR CROSS TWO MANY VMANY MRF2 MRF3

0.25 6.31 6.54 6.71 7.58 11.02 11.12 9.20
(0.12) (0.13) (0.12) (0.13) (0.09) (0.14) (0.12)

0.50 1.18 1.38 1.59 2.78 7.24 7.98 5.22
(0.05) (0.05) (0.06) (0.07) (0.10) (0.09) (0.09)

0.75 0.60 1.01 1.08 2.38 7.37 8.01 4.98
(0.04) (0.07) (0.05) (0.09) (0.15) (0.11) (0.10)

1.00 0.64 0.98 0.97 2.27 8.26 8.63 5.20
(0.04) (0.06) (0.06) (0.08) (0.19) (0.08) (0.09)

1.25 7.11 1.08 1.25 2.81 9.76 9.25 5.72
(0.04) (0.06) (0.09) (0.08) (0.25) (0.11) (0.09)

1.50 6.87 1.08 1.44 3.13 11.24 9.72 6.22
(0.04) (0.08) (0.09) (0.11) (0.30) (0.12) (0.11)

In Tables IV to VII we present the analogous results for black and white

pixels. These results are similar to those in Tables II and III. Notice that the

'optimal' value of 3 is larger for white pixels than for black in the majority of

scenes. This.may be due to the higher proportion of boundary pixels for black
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features in most scenes ( see Table IX).

TABLE IV

Average percentage of black pixels classified white using model II
Standard errors in brackets.

Optimal reconstruction is bold faced
a--0.5

B BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 4.43 7.72 7.59 11.91 16.16 9.51 7.70

(0.15) (0.34) (0.28) (0.39) (0.33) (0.20) (0.18)
0.50 0.77 4.30 4.87 12.13 18.46 7.87 4.98

(0.06) (0.41) (0.21) (0.44) (0.48) (0.16) (0.12)
0.75 0.42 5.36 5.33 14.80 24.96 8.11 5.04

(0.06) (0.37) (0.33) (0.67) (0.54) (0.17) (0.14)
1,00 0.37 5.21 5.94 16.98 32.37 8.86 5.36

(0.05) (0.34) (0.58) (0.65) (0.74) (0.16) (0.20)
1.25 0.30 7.37 6.70 22.43 39.91 9.05 5.98

(0.03) (0.72) (0.41) (1.07) (0.81) (0.28) (0.27)
1.50 0.36 7.23 8.12 25.37 46.71 10.34 6.70

(0.04) (0.81) (0.84) (0.92) (1.05) (0.30) (0.16)

However the accurate estimation of the 'optimal' value of 13 is difficult in many

cases as the plot of the average misclassification rate against 53 (see figs 8 to

14) is J-shaped in the area of interest.

TABLE V

Average percentage of black pixels classified white using model I[
standard errors in brackets

Optimal reconstruction is bold faced

a'=0.5

B BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 6.27 9.37 9.12 12.75 16.42 10.91 9.13

(0.12) (0.33) (0.34) (0.34) (0.25) (0.20) (0.19)
0.50 1.16 4.52 4.81 11.30 16.88 8.08 5.33

(0.06) (0.37) (0.19) (0.37) (0.36) (0.21) (0.16)
0.75 0.49 5.11 4.64 13.05 21.26 7.74 4.98

(0.06) (0.40) (0.27) (U.60) (0.46) (0.14) (0.14)
1.00 0.40 4.82 4.48 14.55 26.60 8.47 5.25

(0.06) (0.41) (0.39) (0.56) (0.70) (0.16) (0.20)
1.25 0.35 6.35 5.63 18.96 32.26 8.62 5.48

(0.04) (0.59) (0.39) (0.86) (0.87) (0.18) (0.22)
1.50 0.37 6.05 6.05 21.36 39.30 9.67 6.19

(0.04) (0.63) (0.58) (0.87) (1.03) (0.23) (0.17)
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TABLE VI

Average percentage of white pixels classified black using model II
Standard errors in brackets

Optimal reconsmction is- bold faced
o2=0.5

3 BM CROSS TWO MANY VMANY MRF2 MRF3
0.25 4.61 4.45 4.60 5.08 7.58 10.22 7.79

(0.11) (0.12) (0.10) (0.13) (0.16) (0.24) (0.19)
0.50 0.83 0.69 0.80 1.07 3.21 7.83 4.8S

(0.05) (0.04) (0.05) (0.05) (0.12) (0.13) (0.19)
0.75 0.64 0.55 0.53 0.77 2.22 8.79 5.23

(0.04) (0.06) (0.06) (0.05) (0.11) (0.16) (0.15)
1.00 0.82 0.58 0.54 0.53 1.71 9.16 5.60

(0.07) (0.05) (0.05) (0.05) (0.10) (0.18) (0.14)
1.25 1.08 0.60 0.71 0.53 1.85 10.63 6.35

(0.10) (0.07) (0.10) (0.05) (0.18) (0.28) (0.25)
1.50 0.95 0.66 0.90 0.60 1.66 10.46 6.85

(0.07) (0.05) (0.08) (0.05) (0.10) (0.27) (0.16)

TABLE VII

Average percentage of white pixels classified black using model III
Standard errors in brackets

Optimal reconstruction in bold face

02=0.5

a3 BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 6.35 6.25 6.38 6.87 9.17 11.33 9.28

(0.14) (0.13) (0.12) (0.14) (0.15) (0.25) (0.18)
0.50 1.20 1.06 1.14 1.60 3.93 7.87 5.10

(0.06) (0.05) (0.06) (0.05) (0.14) (0.15) (0.18)
0.75 0.68 0.59 0.59 0.91 2.60 8.28 4.97

(0.05) (0.06) (0.05) (0.05) (0.08) (0.20) (0.14)
1.00 0.82 0.58 0.49 0.57 1.95 8.80 5.14

(0.07) (0.05) (0.05) (0.04) (0.08) (0.13) (0.10)
1.25 0.99 0.55 0.64 0.57 2.02 9.89 5.96

(0.08) (0.06) (0.08) (0.07) (0.17) (0.22) (0.20)
1.50 0.93 0.58 0.80 0.60 1.59 9.78 6.25

(0.07) (0.05) (0.08) (0.05) (0.10) (0.26) (0.17)

The number of misclassified pixels is a crude image summary which takes

no account of the spatial characteristics of the scene. To gain further insight

into the differences between model II and I we use an image summary which

counts the number of misclassified pixels close to the true boundary between

black and white areas. A similar procedure was suggested by Owen, in the dis-

cussion of Ripley (1986).
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TABLE VIII

Average percentage of misclassified boundary pixels
for MRF3. Standard errors in brackets
The optimal reconstruction in bold face

(There are 2712 boundary pixels in MRF3)

a2-0.5

Model 0.25 0.50 0.75 1.0 1.25 1.5

II Boundary 16.74 16.02 17.35 18.33 20.30 21.42
(0.23) (0.17) (0.21) (0.22) (0.25)

II All 7.74 4.92 5.13 5.48 6.16 6.77
(0.12) (0.09) (0.07) (0.08) (0.12)

III Boundary 17.27 15.98 16.78 17.51 19.11 20.19
(0.25) (0.18) (0.28) (0.25) (0.20)

III All 9.20 5.22 4.98 5.20 5.72 6.22
(0.12) (0.09) (0.10) (0.09) (0.09)

We reconstruct MRF3 using models I and M with a2=0.5. The average

percentage of misclassified boundary pixels are displayed in Table VIII. In this

table we call a pixels with at least one neighbour of a different colour (in the

true scene) a boundary pixel. It is immediately apparent that the majority of

misclassified pixels Lie near colour boundaries when moderate values of 03 are

used. When MRF3 is reconstructed using model III and 13=0.5 there are

approximately 433 misclassified boundary pixels and 89 elsewhere. There is

some evidence that the optimal reconstruction of boundary pixels require a

smaller value of 3 than the scene as a whole. This is also apparent from the

example described by Owen in the discussion of Ripley (1986). There appears

to be little observable difference between Model II and HI using this image

summary.

5. THE CHOICE OF THE SMOOTHING PARAMETER.

In this section we attempt to identify features of the underlying scene and
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error distribution which influence the choice of 3 in (2.6). We restrict attention

to mode! IL First we examine the relationship between the 'optimal' value of 13

and the signal variance 0"2. In figures 8 to 14 we plot the average percentage

of misclassified pixels against 3 for various values of a2. Notice that the value Figs 8-15

of P3 which gives the smallest average misclassification rate is approximately here

the same for all values of 2 considered. The results for VMANY (fig 12)

behave atypically. In this respect the 1CM algorithm differs from simple linear

regularisation techniques where the 'optimal' smoothing parameter is typically

proportional to the noise to signal ratio , Hall & Titterington (1986, p 336). The

effect of grossly misspecifying a2 can be large as the example given in figure 7

-of Ripley (1986) shows. However the relative stability of the" misclassification

rate to changes in 03 chose to its 'optimal' value suggests that 1CM is robust to

modest misspecification of (2. We' see from figs 8 to 14 that worthwhile gains

can be achieved using the 'optimal' value of f3.

In the remainder of this section we examine the relationship between the

'optimal' value of 03 and certain features of the underlying scene. First we con-

sider the relationship between the 'optimal' value of 3 and its maximum

pseudo-likelihood estimate. In this approach we calculate the value of J3 which

maximises the conditional likelihood

FlIP(xij IF (5.1)
i=lj=l

From Table IX we see that the pseudo-likelihood estimates of 3 using model II

are usually greater that the value of 13 giving the smallest average

misclassification rate. This behaviour may be due to the fact that the majority

of scenes considered are untypical realisations from, a MRF. For the scenes

constructed by sampling from a conditional MRF a different pattern emerges.

In this case the 'optimal' 1 is precisely the value of 3 used to construct the

underlying scene (see Tables II,1II and IX), provided we use the correct

model in our reconstruction. The pseudo-likelihood approach has the
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disadvantage of indicating an infinite value of 3 for certain pixel configurations.

Next we introduce two statistics which measure the smoothness of the

underlying scene.

DEFINITION : TWO IMAGE SUMMARIES

B : Total boundary length between black and white pixels

( excluding the window).

QT, : The number of pixels which have at least one

neighbour of a different colour using an i order

neighbourhood.

Notice that Switzer (1976) measures the 'smoothness' of a random function by

the total arc length of its contour plot at certain levels. Applying this measure

to binary random functions gives the statistic B. The image summary QT, can

be written as the difference between the statistics e, and d, defined in Ripley

(1986, p 94) where pixels adjacent to the window are neglected. See Ripley

(1977) for a discussion of image summaries and their application. Notice that

QT,= 2B for many scenes ( see Table IX for several examples ). These statis-

tics differ in their treatment of 'small' features. An isolated black pixel will

contribute 4 to the total boundary length and 9 to Qr,.

There is strong evidence (see Table IX) to suggest that the misclassification

rate for a feature is strongly influenced by the percentage of boundary pixels (

as measured by QT, or boundary length, B ). This effect is indicated by the

difference in the average percentage of misclassified black and white pixels.

The scene BCIR appears to behave in an anomalous way. There is some evi-

dence ( see Table IX) that the value of 3 giving the lowest average proportion

of misclassified pixels decreases as the proportion of boundary pixels ( as
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measured by QT2 or total boundary length) increases. The value of 13 giving the

smallest average percentage of misclassified pixels gives the strongest evidence

for this relationship. There appears to be little difference in the descriptive abil-

ity of QT, and B. In the scenes considered we see that the pseudo-likelihood

estimates of {P are not closely related to the smoothness measures described

above.

TABLE IX

Smallest average percentage of misclassified pixels using model II
and the 'optimal' value of 13 vs smoothness measures.

( pseudo likelihood estimate using model M)
(2 =0.5

Picture black white all QT, B Plik

BCIR 0.30 0.64 0.55

13 1.25 0.75 0.75 344 172 1.85
pixels 4300 5700 10000

CROSS 4.30 0.55 1.00

{5 0.50 0.75 0.75 516 260 2.09
pixels 926 9074 10000

TWO 4.87 0.53 1.11
13 0.5 0.75 0.75 480 240 2.12

pixels 1225 8775 10000

MANY 11.91 0.53 2.41
15 0.25 1.25 0.5 1248 624 2.62

pixels 1216 8784 10000

VMANY 16.16 1.71 7.11
15 0.25 1.0 0.5 3776 1888 1.98

pixels 2560 7440

MRF2 7.87 7.83 7.85 4109 2324 0.50
15 0.5 0.5 0.5

pixels 5065 4935

MRF3 4.98 4.85 4.92 2712 1453 0.63
15 0.5 0.5 0.5 (*0.75)

pixels 5065 4935

A useful indication of the effectiveness of a reconstruction technique can be

obtained by considering its properties in reconstructing a one colour scene. In
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Table X we display the average percentage of misclassified pixels when a one

colour scene is reconstructed using model II. For values of 53 less that 0.4

appreciable errors are incurred. So for scenes with large monochrome areas we

should choose 1 > 0.4.

TABLE X

Average percentage of misclassified pixels for a one colour scene
(using model I) for various values of a2

Standard error in brackets

0.2 0.25 0.3 0.35 0.4

a2 = 0.25 4.98 3.35 2.15 1.30 0.80
(0.03) (0.03) (0.02) (0.02) (0.01)

a2 = 0.50 6.6 3.93 2.26 1.31 0.75
(0.06) (0.05) (0.03) (0.03) (0.02)

(Y2 = 0.75 7.14 4.06 2.34 1.40 0.82
(0.06) (0.06) (0.05) (0.04) (0.03)

a2 = 1.0 7.24 4.25 2.61 1.59 1.06
(0.08) (0.07) (0.06) (0.05) (0.05)

a2 = 1.25 7.49 4.46 2.68 1.87 1.31
(0.08) (0.09) (0.07) (0.07) (0.06)

a2 = 1.50 7.68 4.52 3.03 2.11 1.52
(0.10) (0.09) (0.08) (0.08) (0.05)

To illustrate this point further consider the percentage of misclassified pix-

els for BCIR with o2=0.25. Recall that the majority of pixels in BCIR are far

from the colour boundaries. In Figure XI we compare the percentage of

misclassified pixels using 1CM with the percentage of misclassified pixels for a

one colour scene using the same model.
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TABLE XI

A comparison of the average percentage of misclassified pixels of BCIR
and a monochrome scene when reconstructed using model II
Standard errors in brackets ( 60 realisations for mono scene)

Optimal reconstruction is bold faced

a2=0.25

0.25 0.50 0.75 1.00 1.25 1.50

BCIR 4.53 0.80 0.55 0.65 0.75 0.70
(0.10) (0.03) (0.04) (0.04) (0.04) (0.03)

Monochrome 3.34 0.27 0.02 <0.02 <0.02 <0.02
(0.02) (0.01) (0,.003) (<0.001) (<0.001) (<0.001)

The optimal reconstruction is obtained with 0=0.75, where the percentage of

misclassified pixels is 0.55. The contribution of pixels far from the colour

boundary is approximately 0.02%. These result suggest that the errors incurred

during the reconstruction of scenes like BCIR occur near the colour boundaries

for moderate values of 1 (see Table VI).

Consider a black pixel which has k white neighbours when it is upaated.

The probability of misclassifying this pixel during the current iteration can be

calculated from (2.6). In Table XII we display this probability for model IH with

independent normally distributed noise (a2=0.5).

TABLE XII

The probability that a black pixel is classified white

at a particular iteration when it has k white neighbours

a2=0.5

k 0.25 0.50 1.0
8 0.98 1.00 1.00
7 0.92 1.00 1.00
6 0.76 0.98 1.00
5 0.50 0.76 0.98

4 0.16 0.16 0.16

3 0.08 0.02 0.00
2 0.02 0.00 0.00
1 0.00 0.00 0.00
0 0.00 0.00 0.00

These calculations strongly suggest that model II behaves like a simple majority
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vote when P.LO. Table XII can be used to estimate the 'vulnerability' of

image features for various values of 03. As an example consider the comer pix-

els (k=5) of a black rectangle. This configuration is highly vulnerable when

O.5. As 1CM is an iterative procedure this calculation will not give the pro-

bability of misclassifying a given pixel. However caiculations of this type are

useful in visualising the effect of ICM with various values of 03 and neighbour-

hood system. Using this approach to choose 3 is analogous to a method sug-

gested by Ripley (1986) with the important addition, that information is

included about the noise distribution.

6. SOME DISTRIBUTIONAL PROPERTIES OF 1CM

There appears to be no work in the literature on the distributional properties

of the ICM estimator of (xij) or any functional of interest. The only relevant

work is due to Geman and Geman (1984), who describe how to sample from

the posterior distribution of (x1j). In this section we examine the variance of the

percentage of misclassified pixels. The number of misclassified pixels can be

regarded as a functional of the scene formed by a comparison between (xij) and

its reconstruction. In Table XIII we display the average percentage of

misclassified pixels with its standaid deviation in brackets for &=0.5 and

model 1I. The figures for the optimal reconstruction are given in bold face.

Recall that ICM is a 'local' procedure. This suggests a poisson approximation

for the number of misclassified pixels. The coefficient of variation of the per-

centage of misclassified pixels at the 'optimal' value of 03 appears to decrease

as the misclassification rate (and complexity) increases. This is not consistent-

with a poisson assumption. In particular we see from Table VIII that

misclassified pixels cluster near colour boundaries. The skewness (b ) and

kurtosis (b2) of the percentage of misclassified pixels were calculated and sug-

gest a symmetric distribution with b2 between two and three. These are
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tentative conclusions as the number of realisations used in this study is small.

TABLE XIII

The standard deviatdon ( in brackets) and the average percentage
of misclassified pixels using model II

The optira reconstruction is bold faced

CZ-0.5

3 BCIR CROSS TWO MANY VMANY MRF2 MRF3

0.25 4.53 4.75 4.96 5.91 9.78 9.86 7.74
(0.40) (0.42) (0.33) (0.49) (0.34) (0.54) (0.48)

0.50 0.80 1.02 1.30 2.41 7.11 7.85 4.92
(0.10) (0.16) (0. i7) (0.29) (0-39) (0.35) (0.33)

0.75 0.55 1.00 1.11 2.48 8.04 8.44 5.13
(0.14) (0.26) (0.18) (0.34) (0.73) (0.39) (0.25)

1.00 0.63 1.01 1.20 2.53 9.56 9.01 5.48
(0.16) (0.20) (0.25) (0.35) (0.71) (0.35) (0.32)

1.25 0.75 1.22 1.44 3.19 11.60 9.83 6.16
(0.21) (0.33) (0.38) (0.41) (0.96) (0.45) (0.47)

1.50 0.70 1.27 1.78 3.61 13.19 10.40 6.77
(0.12) (0.33) (0.46) (0.46) (1.10) (0.51) (0.45)

7. COMPUTATIONAL DETAILS

Pseudo-random deviates distributed uniformly on [0,1] were generated using

Wichmann & Hill (1982). We take ix=27631 , iy=5627 and iz=10234.

Pseudo-normal deviates with zero mean and unit variance were constructed

using the Box-Muller transformation. The first step in our algorithm is to deter-

mine the maximum likelihood estimate of (xij). This colouring is used as the

initial state ( iteration zero ) of our algorithm. Each pixel is visited in raster

scan order and the colour of the (i,j)"' pixel is updated using (2.6). The cpu

time taken by our algorithm is proportional to the size of the neighbourhood

system used, the number of pixels and the size of d 2 .

In Table XIV we display the average number of pixels whose colour

changes during the k"' iteration when MRF3 is reconstructed using model II.
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The average percentage of misclassified pixels is also presented. In this table

one iteration is equivalent to a complete sweep of the scene ( 10 pixel visits ).

Notice that the majority of changes occur during the first iteration (more

changes are made as 13 increases). Typically only one or two pixels change

colour during later iterations. This pattern is repeated for each combination of

scene, aY2 and model considered.

TABLE XIV

Average number of changes per iteration and percentage of
misclassified pixels for MRF3 (model I)

Standard errors in brackets

a2=O0.5

P=0.25 [=0.50 =1.0
k changes % miscl'd changes % miscl'd changes %miscl'd

1 1587 9.84 2117 6.47 2346 6.58
(8) (0.13) (12) (0.09) (10) (0.08)

2 206 8.18 189 5.31 153 5.93
(5) (0.12) (4) (0.08) (3) (0.08)

3 42 7.87 44 5.07 50.0 5.70
(2) (0.12) (3) (0.08) (2) (0.08)

4 12 7.78 16 4.98 21 5.58
(1) (0.12) (1) (0.08) (1) (0.08)

5 3 7.75 6 4.95 10 5.52
(1) (0.12) (1) (0.08) (1) (0.08)

6 1 7.74 3 4.93 5 5.50
(0) (0.12) (0.6) (0.08) (1) (0.08)

12 0 7.74 0 4.92 0 5.48
(0.12) (0.09) (0.08)

This suggests the following modification of the basic algorithm:

Pixels are only updated when they are flagged as 'active'. The pixel (ij) is

'active' when the colour of at least one of neighbours has changed during the

current iteration. Pixels are visited in raster order. When a pixel's colour
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changes it neighbours become actve. Pixels are de-activated after they are

updated.

Using this algorithm we would visit ( see Table XIV) less than nine hundred

pixels on average ( using a second order neighbourhood ) during the third itera-

tion. We expect the modified algorithm to converge after approximately 3

iterations in general. To obtain further gains in efficiency we might 'switch

off' pixels whose colour has a low probability of being changed during the

current iteration,see Ripley (1986). For example a pixel which has no neigh-

bours of a different colour can be de-activated.

8. CONCLUSIONS

From the simulation study described in this paper we suggest the following

rules of thumb for prospective users of ICM.

1. Should I use ICM ?

Our empirical results suggest that the misclassification rate of a feature

increases with the proportion of boundary pixels (see Table IX and compare the

misclassification rate for black and white pixels). Typically small feature will

be 'erased'. If the aim of an analysis is to find small features then a technique

based on masks will probably be preferable to ICM. However it is apparent

from Table I that substantial gains over the maximum likelihood estimate, can

he achieved by smoothing.

2. 'Which model should I use?

We suggest that model In should be used in the absence of specific

knowledge about the uncorrupted scene. If we know that the underlying scene
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is non-homogeneous we can exploit this by using a hierarchical model, see

Derin & Elliot (1987) or WoodsDravida & Mediavilla (1987).

3. What value of 3 should I use?

This is a difficult question to answer in the absence of any information

about the underlying scene. The examples considered in this paper suggest that

useful gains can be achieved using the 'optimal' value of (3 rather than a port-

manteau value of, say 3=1.5. We distinguish between two cases. In the first

we assume that the underlying scene is a 'typical' realisation from a MRF.

Then the 'optimal' reconstruction is obtained using the neighbourhood system

and value of 3 specified by the underlying MRF. When the underlying scene

cannot be regarded as a 'typical' realisation from a MRF we suggest the used

of smoothness measures such as the total boundary length in the choice of the

' optimal' value of 3. In both cases we see that the 'optimal' value of (3 does

not depend on a2. From figs 8 to 14 we see that there is some leeway in

choosing the 'optimal' value of (3.

4. Is the ICM estimate difficult to calculate?

From the discussions in section 7 we see that a single reconstruction of a

binary 104 pixel scene can be computed simply. The calculations appear well

suited to parallel implementation. Tlie scene VMANY with a2--.5 was recon-

structed in around 39 seconds (using model II with 3=0.5) on a SUN-3 Work

Station with a floating point accelerator.
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CAPTIONS FOR FIGURES 1 TO 15

FIGURE 1 BCIR : Circle centred at (30,30) with radius 40. The origin is at
the bottom left hand comer of the window which has dimensions
(0,100)x(0,100).

FIGURE 2 CROSS Two rectangles with corners at
{(10,40),(60,20),(70,30),(20,50)) and ((25,20),(30,15),(55,50),(50,55)}

FIGURE 3 TWO : Two rectangles with comers at ((10,40) , (60,40) ,
(60,50), (10,50)) and ((20,55), (65,55), (65,60), (20,60))

FIGURE 4 MANY : Eight circles of radius 6 centred at, (25,20) , (45,20) ,
(65,20) , (80,20) , (25,80) , (45,80) , (65,80) , (85,80) and ten circles of radius
3 centred at (20,40) , (35,40) , (50,40) , (65,40) , (80,40) , (20,60) , (35,60)
(50,60) , (65,60) , (80,60).

FIGURE 5 VMANY : Eighty circles with radius 3 and centres at
(5+10j,10k-7) for j=l,...,8 and k=l,...,10.

FIGURE 6 MRF2 : A synthetic realisation from the MRF specified in
MODEL II with 3=0.5. This scene was constructed using an algorithm given in
Cross and Jain (1983).

FIGURE 7 MRF3 : A synthetic realisation from the MRF specified in Model
III with 3=0.75. This scene was constructed using the algorithm given in Cross
and Jain (1983).

FIGURE 8 A plot of the average percentage of misclassified pixels against 13
and o& when BCIR is reconstructed using MODEL H

FIGURE 9 A plot of the average percentage of misclassified pixels against f3
and a when CROSS is reconstructed using MODEL I

FIGURE 10 A plot of the average percentage of misclassified pixels against 13
and a when TWO is reconstructed using MODEL H1

FIGURE 11 A plot of the avenge percentage of misclassified pixels against
and a when MANY is reconstructed using MODEL 1I

FIGURE 12 A plot of the average percentage of misclassified pixels against
and a when VMANY is reconstructed using MODEL 11

FIGURE 13 A plot of the average percentage of misclassified pixels against
and a when MRF2 is reconstructed using MODEL II
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FIGURE 14 A plot of the average percentage of misclassified pixels against i
and cr when MRF3 is reconstructed using MODEL HI

FIGURE 15 A plot of dhe average percentage of misclassified. pixels against 1
for model Ul and (1/1. 117)p3 for model I
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R.IiGlendinning FIGURE 3



- 31-

R.H.Glendinning FIGURE 4
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RHLLGendinning: FIGURE 8
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R.H.Glendinning: FIGURE 12
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R.aLGendinning: FIGURE 13
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Several algorithms for image reconstruction in positron emission tomography

(PET) have been described in the medical and statistical literature. We

study a continuous idealisation of the PET reconstruction problem,

considered as an example of bivariate density estimation based on indirect

observations. Given a large sample of indirect observations, we consider the

size of the equivalent sample of observations, whose original exact positions

would allow equally accurate estimation of the image of interest. Both for

indirect and for direct observations, we establish exact minimax rates of

convergence of estimation, for all possible estimators, over suitable

smoothness classes of functions. For indirect data and (in practice

unobservable) direct data, the rates for mean integrated square error are
n-p/(p 2) and (n/logn)-P/ (P+1) respectively, for densities in a class

corresponding to bounded square-integrable pth derivatives. We obtain

numerical values for equivalent sample sizes for minimax linear estimators

using a slightly modified error criterion. Modifications of the model to

incorporate attenuation and the third dimension effect do not affect the

minimax rates.
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I Introduction

Tomography is a non-invasive technique for reconstructing the internal structure

of an object of interest, often in a medical context. Positron emission tomography

(PET) deals with the estimation of the amount and location of a radioactively labeled

metabolite on the basis of particle decays indirectly observed outside the body.

Emission tomography in general, and PET in particular, has been the subject of

considerable recent research in nuclear medicine, and has attracted the interest of

statisticians as an example of a reconstruction problem involving incomplete and noisy

data.

The formulation of the PET problem we shall consider is basically that given by

Shepp and Vardi (1982) and Vardi, Shepp and Kaufman (1985). Following their

convention we shall consider a particular PET experiment, where the brain is scanned

by counting radioactive emissions from tagged glucose. The distribution of glucose

within the brain corresponds to the glucose uptake mechanism, and so a map of the

glucose distribution within the brain gives an indication of the pattern of the brain's

metabolic activity. In the idealisation we shall consider, following Vardi et al. (1985),

the radioactive tagging of the glucose gives rise to emissions of positrons distributed as

a Poisson process in space and time; the spatial intensity of emissions is the same as

the distribution of glucose. Each positron that is emitted annihilates with a nearby

electron, and yields two photons that fly off in opposite directions along a line with

uniformly distributed orientation. One or more rings of sensors placed around the

patient's head make it possible to detect the photon pairs and hence, for each emission

that is deteqted, to give a line on which the point of emission must have occurred.

However, for equipment of the kind discussed here, it is not possible to detect the

position of the emission on the line.

The PET problem is just one of a large number of statistical problems involving

indirect observations of the phenomenon of interest; in our case the observations are

indirect in that the emissions themselves are not observed directly. Such problems

arise, for example, in geophysics, in stereology and wherever linear deconvolution with

known filter is required. Our aim in the present paper is not just to study the PET

problem but also to develop theory that can be applied in many other contexts.

In a typical PET scan, a large number, perhaps one to ten million, radioactive

emissions are recorded, and the image of interest, a slice through the patient's brain or

body, is reconstructed in some way from this apparently vast data set. But is ten

million observations really a large sample in this kind of context? One way of gaining

some insight into the problem is to think in terms of equivalent sample sizes. We

make some smoothness assumptions about the image of interest, and then ask how

accurately it could possibly be reconstructed given a particular indirect sample. The



equivalent sample size would be the number of emissions whose original positions

could yield an equally accurate estimate. The equivalent sample size gives, in terms

more attuned to usual statistical intuition, a quantification of the information actually

available from our sample of ten million indirectly observed emissions, and hence

gives an idea of how much is lost by the indirect nature of the observation process.

In Section 2 below, we formulate the reconstruction problem as an example of

nonparametric bivariate density estimation based on indirect data, in fact an example

of a linear inverse problem in a function space. The function we estimate is the

intensity function of emissions in the slice through the brain. A key feature of our

treatment is the explicit singular value decomposition of the transform linking the

unknown density with that of the observed data. The main conclusions of the paper

are summarised in Section 3. In particular we give in Section 3 a table of explicit

equivalent sample sizes, admittedly for our mathematical idealisadion of the PET

problem. In Section 4 we confine attention to linear estimators, and to intensities

falling in a suitable smoothness class of functions. We find the exact minimax rates of

consistency, that is the rate for the least favourable density and the best linear

estimator. We then show, in Section 5, that these rates cannot be improved by

extending consideration to all possible estimators, linear or non-linear. Thus we do not

consider particular iterative non-linear algorithms proposed elsewhere for practical use,

but instead we establish the best possible performance achievable by any estimator.

Section 6 of the paper considers modifications of our mathematical idealisation in

order to take account of attenuation of the emitted photons and of the three

dimensional nature of the problem. Our broad conclusions carry over when thes-

effects are incorporated. In Section 7, we extend our results to some error measures

based on the derivatives as well as the values of the images and their reconstructions.

Finally, in Section 8, we make some concluding remarks, and mention some possible

issues for future research.

A subsidiary objective of the paper is to illustrate, in a relatively simple and

concrete setting, the general approach to deriving lower bounds to estimation risk

developed by Le Cam (1985, for example), Ibragimov and Hasminskii (1981), and

Birgd (1983). This method relates the best possible speed of estimation (in a given

"global" metric) to the metric entropy structure of the parameter space. We need a

minor modification to handle the present indirect estimation setting, introducing a form

of "modulus of continuity" of the inverse transform. This material is presented mainly

in Section 5.

There is a substantial literature on practical algorithms for reconstruction in the

PET setting. An extensive survey covering the period up to 1979 is given by Budinger,

Gullberg and Heusman (1979); this includes adaptation of methods from X-ray
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transmission tomography and the orthogonal series method of Marr (1974). Maximum

likelihood methods were proposed by Rockmore and Macovski (1977); they were

implemented via the EM algorithm by Shepp and Vardi (1982) (see also Vardi, Shepp

and Kaufman, 1985) and modified in various ways to incorporate smoothing by

Geman and McClure (1985) and Silverman et al. (1988). Some practical illustration of

the orthogonal series method introduced in the present paper is given by Jones and

Silverman (1989). A recent survey of algorithms is given by Tanaka (1987). Papers

considering noise linmititions in X-ray and transmission tomography include Chesler et

al. (1977) and Tretiak (1978, 1979). The focus of these papers differs from ours in

that they consider estimation of a fixed finite number of real-valued functions of a

particular unknown intensity, using discrepancies based on variance rather than mean

square error.

2. Mathematical model and technical preliminaries

2.1 An idealised problem and the Radon transform

In our idealised version of the PET problem, the ring of detectors defines a slice

of the patient's head, and the reconstruction aims to display a picture of the glucose

density within that slice. Emissions that give rise to photon pairs, one or both of

which miss the detector ring, will go unrecorded. Bearing this in mind, we shall

regard the slice as a plane and consider an essentially two-dimensional problem where

(see Fig. 2.1) emissions take place in the plane according to some density within a

detector circle taken to be the unit circle in the plane. An emission at P gives rise to a

photon pair whose directions of flight lie in the plane along a line I through P with

random, uniformly distributed, orientation. The finite size of the detectors is ignored

and it is assumed that the points Q and R of the intersection of I with the detector

circle are observed exactly,

Give the name detector space to the space D of all possible unordered pairs QR

of points on the detector circle, and call brain space the original disc B in the plane

enclosed by the detector ring. Assume that coordinates are chosen so that B is the unit

disc. Brain space is parametrised either by cartesian or standard polar coordinates. To

parametrise detector space, let s be the length of the perpendicular from the origin to

-- ." the detected line QR as in Figure 2.2, and 9 the orientation of this perpendicular. Thus

D is {(s,(o):0<s!l, 0<P_2x}.
i ,,jr-,' /!

We now define dominating measures on brain space and on detector space.

Define a measure p on brain space to be r- x lebesgue measure, so that

dg(r,O) = ir-rdrdO for 0<r, 1 and 0<0<2r if polar coordinates are used, and

d.(x ,x-).= r- 1 Ldxdx 2 for IjxII <1 in Cartesian coordinates. On detector space, define

3



a measure A by d1(s,p) = 2x- 2(I-S 2)dsdp. Both u and A integrate to 1.

Suppose an emission takes place at a point distributed with probability density

f(x t ,x2) with respect to u in brain space. Let g = Pf be the probabili:ty density in

detector space, with respect to )L, of the corresponding detection of a pair of photons,

so that the mapping P maps the actual density of emissions to the corresponding

observable density in detector space. We shall show belcw that Pf is given by

2)-,) qG -S) f(s cos i - t s , s sin q + r cos p)dt (2.1)Pf(s,@) = i(l-s2) 4- 3 /(_,) sn S

The integral in (2.1) is the so-called Radon transform (see Mar, 1974; Deans, 1973)

of the density f, namely the line integral of f along the line I with co-ordinates (s,i)
in detector space. Since the length of the segment QR is 2(1-s 2 ), it can be seen at

once that Pf(s,q) is the average of f over the part of I that intersects the detector disc

Ixll:l. Iff is the uniform density in brain space, so that f(xlx 2 ) = 1 for all Ix 1151,
then we will have Pf(s,4) = I for all s and q7. Thus the probability measure Z in

detector space is the detector space distribution corresponding to the uniform measure

u in brain space.

L2 '3 It remains to verify (2.1). Suppose an emission takes place at (X1 ,X2) and that

the corresponding photon pair has trajectory at angle IF as shown in Figure 2.3; taking,

, 0.. 0TF< for definiteness, the joint probability density with respect to dxldx2 dK on

SIxtI_ 1 and 0-<':x is given by

fx,,X2.p (X1 ,x2 ,41) = r-2f(xl,x 2)

using the definition of p. and the fact that 'T is independent of X1 and X2. Now

change variables by setting

S =IXcosTF + X2sinTFJ

1PI if XIcosT + X2 sin T __0

0- {'P+r otherwise

T =-X 1 sin T + X2 cos'P;

the variables (S,O) are the coordinates of the detected photon pair. After making the

transformation, which has unit Jacobian, and integrating out the unobserved variable T,

we obtain the joint density with respect to ds dp

fs. (s,(o) = ,r2 -- S2) f(s cos p - t sin p,s sin q + t cos p)dt.

The density (2. 1) with respect to A follows at once from the definition of A.
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2.2 Estimators and loss functions

In this section, we define various classes of estimator of f that we shall be

considering, as well as two measures of the accuracy of estimation of f. The proofs of

the three propositions stated in this section are given in the Appendix.

Two particular classes of estimator are of obvious interest. Let TD(n) be the

class of all possible estimators based on a sample of n independent direct observations

in brain space from the density f. Let T/(n) be the class of all estimators of f based

on a sample of n indirect observations, i.e. observations in detector space drawn from

the density Pf. It will also be important in some of our work to concentrate attention

on those estimators that are linear estimators. An estimator f based on observations

Z .... ,Z,, is called linear if there exists a weight function w(x,z) such that

f w(x,z)du (x)=1 for all z in the space of the observations, and

n

f(x) = n - X w(x,Z i ) for all x in B. (2.2)
i=z I

Let TwD(n) be the set of all linear estimators based on a direct sample of size n

subject to the additional condition ffw(x,x') 2 dg(x)dgL(x')< *, and let Tu(n) be the

set of all linear estimators of f based on an indirect sample of size n for which

ffw(x,y)2 du(x)d,(y)<*. The additional square integrability conditions are mild; they

ensure that f has finite mean integrated square error if f is bounded.

One natural measure of the accuracy of an estimator f is the mean integrated

square error M(f;f) = EffJB (ff) 2diu. By standard calculations,

M(f;f) = [varf(x) + ( Eff(x)-f(x)i 2 1 du (x) (2.3)

where the suffix f indicates that the mean and variance are calculated for data drawn

from f in the direct case and Pf in the indirect case. We define the surrogate mean

integrated square error M*(f;f) by replacing the variance term in (2.3) by the

corresponding term calculated for the uniform density on brain space
M*(f;f) = [varjf(x) + ( Eff(x)-f(x)} 2 ]du(x) , (2.4)

where var, denotes a variance calculated with respect to data drawn from the

probability measure u in the direct case and . in the indirect case. An important

relation between the surrogate and the true mean integrted square error for linear

estimators is given by the following lemma.

Proposition 2.1 Suppose that f is bounded above and below away from zero. Then,

for all f in T'LD(n) or in 'Tul(n)

infgf(x) S M(f;f)/M*(f;f) < supBf(x).
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2.3 The singular value decomposition of the Radon transform

The singular value decomposition (SVD) of the normalised Radon transform P

defined in (2.1) is the key to our study of the loss of information about f due to

indirect observation. To establish notation, let H and K be Hilbert spaces and

P :H--+K a bounded linear operator. Under suitable conditions, there exist

orthonormal sets of functions ( ,p in H and ( v) in K, and positive real numbers

(b,, the singular values of P, such that the { 9,] span the orthogonal complement of

the kernel of P, the [ V,) span the range of P, and Pq9=byV, for all v.

Thus P is diagonal in the bases ( 47j and { yr,. If a singular value b, is small,

then noise encountered in estimation of the component of f along 'p, will be amplified

by a factor of b, . Some form of regularization method (Tikhonov and Arsenin,

1977) is needed to deal with this instability, and one such method, based on tapered

orthogonal series, will be exploited in Section 4 below.

In our PET model, H is the space L2(B,,u) of functions on brain space which are

square-integrable with respect to the dominating measure p. Correspondingly, K is the

space L2(D,A) of detector-space functions square-integrable relative to A. Suppose

that X = (X1 ,X2) is drawn at random (according to u) from brain space B. If a

direction ip is specified by up = (cos q, sin V), then

Pf(srp) = Esf(X)ju}X

From this representation it follows at once that P is a bounded operator from L 2(B,,g)

to L 2(D,A) with norm 1 and, by arguments involving characteristic functions, it is

one-to-one.

The SVD of the Radon transform in this specific setting appears to have been

first derived by workers in optics and tomography; we now review its properties

drawing material from Born and Wolf (1975, Chapter 9.2.1 and Appendix VII), Marr

(1974) and beans (1983, Section 7.6). Since the underlying spaces are two

dimensional, we need double indices, specifically v e N =

{(l,m) :m = 0,1,2 .... ; I = m,m-2. n-m). In brain space, an orthonormal basis

for L 2(B,p) is given by

9p,(r,e) = (m+l)iZ/I(r)eiGe  v = (l,m) e N, (r,O) r B, (2.5)

where ZA denotes the Zernike polynomial of degree m and order k. Zernike
I k k

polynomials satisfy the orthogonality relation Q Zk+zs(r)Zk+(r)r dr =

i(k+2s+l)-18s,, and can-be expressed in terms of the more general family of Jacobi

polynomials. They arise naturally from a study of the action of rotation on L 2(B,g).

The corresponding orthonormal functions in L 2(D,AI) are

,'(s,qp) = Um,(s)eP v = (l,m) e N, (s, 4) e D (2.6)
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where Um(cos 9) = sin (m+ 1)9/sinO are the Chebychev polynomials of the second

kind. We have Pip = byV,, with the singular values b, = b., specified by

b, = (m+l)-i v = (l,m)eN . (2.7)

The relatively slow decay of the singular values with degree m (independently of /)

suggests that the costs of indirect observation in the PET problem are not inordinately

large.

Since we work with real densities f, we may identify the complex bases (2.5) and
(2.6) with equivalent real orthonormal bases in a standard fashion. For example

f=X f',,¢V=zfl'i where

F2 Re(otl.) if 1>0

,n = 1 €0.m if 1=0

L42 "m(4Pi,,) if 1<0

and similarly for the real coefficients !.m From now on, we suppress the tildes in the
notation and use whichever basis is convenient.

2.4 Smoothness classes

In our subsequent analysis, we place constraints on the unknown density f over
brain space by assuming it lies in a particular class F. For reasons of mathematical
tractability, this class is taken to be a particular ellipsoid F in the Hilbert space

H = L 2(B,pu), specified by an array of constants {a,) and a threshold c:

f,,p, Y af c. (2.8)

Ellipsoid conditions can amount to the imposition of smoothness and integrability
requirements. For example in the simple case where (op,, is the sequence of

trigonometric polynomials on a bounded interval [0,2,r] in one dimension and
a,-vP. Xaf, < l0 if and only if the periodic function f has p square-integrable

derivatives on the interval.

To describe specific ellipsoids in the PET problem, it is useful to transform the
index set N by the change of variables j = (m+l)/2, k = (m-l)/2 into the lattice

orthant N' = {j,k) : j > 0,k > 01. Using the real version of the basis (,,}, let

Fp.c = {feH :foO = 1, 1 (j+l)P(k+l)Pfj1  < 1+C2}. (2.9)

This set is characterised by the following proposition.

Proposition 2.2: The function f in H lies in some FP.c if and only if f has p weak

derivatives that are square integrable on B with respect to the modified dominating

measure d/g,(x) = (p+l)(1-11xjj2 )Pdt(x).
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The condition derived in Proposition 2.2 is of course somewhat weaker than requiring
square-integrability with respect to u and the reason for the modification of the

dominating measure is discussed in the proof; a similar technical phenomenon occurs
in Cox (1988). Nevertheless, Fp~c can be regarded as imposing a set of smoothness

and integrability conditions : the higher p is, the smoother are the functions allowed in

Fp,c-

How smooth are the functions that we are trying to reconstruct? In X-ray

transmission tomography, there may be discontinuities, or at least sharp jumps, in
tissue density across the boundaries of various regions. As noted by Natterer (1980,
1986), functions that are piecewise smooth with jumps only along smooth curves lie in
Sobolev spaces corresponding to p < J square integrable (fractional) derivatives. In
emission tomography, with its inherently lower resolution, it may perhaps be
reasonable to postulate somewhat smoother emission densities of the labelled

metabolite. In any case, our theory is presented for arbitrary values of the smoothness

p > 0 wherever possible.

To ensure that elements of Fpc are bona fide probability densities, some further

restrictions are needed. To have total mass I, we require f00 = I. By restricting the
constant C that governs the ellipsoid size, we can ensure that f(x) >_ 0. This is a

consequence of the following proposition.

Proposition 2.3: Suppose p Z: I and f !TP'c. Then

suE If(x) - If < C (1-P)/2. (2.10)

Equality is attained in (2. 10) if f is a linear function of x.

It follows from the proposition that Fp,c will be a class of nonnegative functions on B

if and only if C < 2(P- 1)/2. Note also that if g = Pf, then

sup Ig(y)-l < sup lf(x)-l (2.11)
y x

since P is an averaging operator.

3. Main conclusions of the paper

3.1 Arbitrary estimators

We use minimax mean integrated square error as our basic approach to the

quantification of the information available in a given sample. The maximum is taken
over a smoothness class F,,c of unknown functions f, and the minimum is then taken
over a class of estimators ', whose specification of takes account of whether the



sample is "direct" or "indirect". We define the various classes of estimators as in

Section 2.2 above, and the smoothness classes Fpc as in Section 2.4.

Suppose we have a sample from a density f and an estimator f off based on that

sample. An assessment of the accuracy of f that does not depend on a particular
unknown f can be obtained by merely restricting f to lie in a fixed class, for example

Fp.c for some fixed p and C, and finding the maximum mean integrated square error

R(f) = sup M(f;f). (3.1)
JEYr,c

The maximum risk gives an indication of how well any given estimator will perform,

but a large value of R(f) might indicate either that there is not much information in

the sample or that an inefficient estimator is being used. Because we are interested in

the experiment itself rather than any particular estimator, we consider the minimum
value of R(f) over suitable classes of estimators f.

Define

rD(n) = inf RV) (3.2)
feTO(n)

and

rl(n) = inf R(f) . (3.3)

fEZ(n)

These minimax risks quantify the information about the unknown density inherent in

"direct" and "indirect" data sets of size n, in a manner that is independent of the
method of estimation. Comparing their relative values gives an indication of how much

information is lost because data can only be observed indirectly in practice.

We can now state our first main result, which gives exact orders of magnitude for

rD(n) and rl(n) for fixed p and C. The condition placeion C is precisely that needed

to ensure that all elements of Fp." are positive probability densities. Here and

subsequently we use the notation an=bn to mean that the sequences (a,,) and (b.)

satisfy inf,(an/b,)>O and supn(an/b,)<.

Theorem 3.1: Forfixed p2:1 and O<C<2 (P - t ) , with the definitions (3.1) to (3.3),

rD(n) = (log n/n)PI(P+t ). (3.4)

and

rt(n) = (l/n)P(P+2). (35)

The proof of Theorem 3.1 is given in Sections 4 and 5 below. It ca,- be seen

from (3.4) and (3.5) that the effect of the indirect nature of the observations taken in

practice is to reduce somewhat the rate at which the minimax risk converges to zero.
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Suppose, for example, p=l, corresponding to f having square-integrable first weak
derivatives. Then (neglecting the logarithmic- term) the rate is reduced from n-1/2 to
n-113 by taking indirect rather than direct observations. Note that both these rates are
slower than the n-' rate usually obtained for mean square error in parametric
statistics; this is because, even with the restriction that f lies in F,.c, the space of

possible parameters is infinite dimensional.

Theorem 3.1 also leads to some qualitative conclusions about equivalent sample
sizes. Define the equivalent sample size m(n) to a given indirect sample size n to be
the number of emissions knowledge of whose original positions in the brain would
allow us to estimate f with the same minimax accuracy, so that

rD(m(n)) = r,(n) . (3.6)

Some simple algebra from (3.4) and (3.5) yields the order of magnitude of the
equivalent sample size as

m(n) = n(P+l(P+2)logn. (3.7)

Perhaps not surprisingly, the order of magnitude of the equivalent sample size
depends on the smoothness assumptions made on the density f. The smoother f is
assumed to be, the larger will be the index p. Hence for very smooth densities the
power in (3.7) will be close to 1 and little will be lost as a result of the indirect nature
of the observation process. However, in reality, we ought not to assume that the true
emission density necessarily varies very smoothly, since tissue boundaries and/or
localised areas of high metabolic activity may lead to discontinuities, certainly in high
derivatives of f and possibly in f itself.

3.2 Linear estimators

More precise numerical quantitative conclusions cannot be drawn directly from
(3.7), because Theorem 3.1 only gives orders of magnitude for the relevant risks. We
are able, however, to give explicit approximate numerical equivalent sample sizes for
minimax risks calculated restricting attention to linear estimatos and using as a
measure of error the surrogate mean integrated square error M* defined in (2.4). By
analogy to (3.2) and (3.3) define surrogate linear minimax risks rZ_(n) and rL(n) by

rL(n) = inf sup M*(f;f) (3.8)
fE'Tw(n) f/F,.c

and

r j(n) = inf sup M*(f;f). (3.9)
feTu(n) fe~pc

The second main result gives leading terms of asymptotic expansions for rt and
rL. The leading orders of magnitude are exactly the same as those given for the
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corresponding quantities in Theorem 3.1, and so the restriction to linear estimators

does not affect the rates of convergence available. All the constants cj depend only on

the smoothness p and are collected in Table I. One of our reasons for introducing

surrogate mean integrated square error is that we have been able to derive these more

precise expressions, and hence obtain numerical results. The other reason is that the

- result of Theorem 3.2 is a key step in the proof of Theorem 3.1.

Theorem 3.2: For x > 1, let a (x) denote the solution to a log a=x, and set

7P41 += Cf+(C 2nC 2). (3.10)

Then, provided O<C!_20p-t),

r,(n) = c3n-7n (log7,+c4) + O(n- 1 7') (3.11)

= c5C 2/(P+1)(logn/n)P'(P+') ( 1 + o(1)) (3.12)

and

rL(n) = C6C4(P+2)n - p l tp 2) + O(n-(p-l (p.2)logn) (3.13)

The form (3.12) for r[: is more transparent, but the error term can be shown to have

the same polynomial order as the leading term; the error term in (3.11) is of lower

order and so we use (3.11) in numerical computations. Of course, ax(x) can be found

numerically when required and is asymptotic to x/logx for large x.

For any particular indirect sample size n, the approximate equivalent sample size

m*(n) can be found: equate the expressions (3.11) for rL(m*),and (3.13) for rL(n),

neglect the lower order terms, and solve numerically for m*. For definiteness we take

C 2 = 2p - l , the largest value for which all f in Fpc are non-negative probability

| Pa .-.. densities, so long as p_>l (Proposition 2.3). Some representative cases are given in

Table 2. As expected, the equivalent sample size increases as the assumed amount of

smoothness rises. If technology allows an order of magnitude increase in the amount

of data collected, then the equivalent direct sample sizes increase by a factor of

between 5 and 8, this factor itself increasing with assumed smoothness.

For the quantity m*(n) the asymptotic constant of proportionality in the

expression corresponding to (3.7) can be found. A simple calculation uses relations

(3.12) and (3.13), with the error terms ignored, to conclude that

m*(n) = (p+ 1)(p+2) - ' (C5/C 6)(P+I)IPC-2(p+2)n (P+1)1(P+2)log n (i+o(l)}.

In summary, our results confirm intuition that for the PET problem, the amount

of information available is still substantial, but it is by no means as great as if a

sample of the same number of direct observations were available.



4. Convergence rates for linear estimators

The main aim of this section is to prove Theorem 3.2, which gives the asymptotic

behaviour of the surrogate risks (2.4) for linear estimators. It is a consequence of

Propositions 2.1 and 2.3 that, provided C<20 - 1) , the ratio exact to surrogate mean

integrated square error for linear estimajes will be bounded above and below away

from 0 uniformly over Fpc. Since TLD(n) and TuL(n) are subclasses of TD(n) and

T(n) respectively, it then follows that the orders of magnitude of rD(n) and r1(n) are

bounded above by those obtained in Theorem 3.2 for surrogate linear minimax risks.

Once Theorem 3.2 has been proved, the proof of Theorem 3.1 will be completed in
Section 5 by showing that these are also lower bounds.

4.1 Structure of the linear minimax estimator

We consider the indirect case first; the argument we shall use will apply to the

direct case also. We start by defining some notation. Suppose that f is in TL(n).

For v and x in N define w, = fw(x,y).p¢(x)V/,,(y)du (x)d2(y); because of the

condition f fw 2duda < -, standard functional analysis gives that, in the L 2 sense,

w(x,y) = 1 w., P(X)/,'(Y). (4.1)
vxf

As 'n Section 2.3 and 2.4, we expand f as Zf,,p, We write W for the infinite matrix

(wv,) and f for the vector (f,). The index set of all vectors and matrices will be the

set N; the subscript (0,0) will be written as 0 for simplicity. Since Jfdut = 1 the

coefficient fA = 1. Write B = diag(bv), the singular values of the operator P. Let e,

be the vector (8, : x E N). The first lemma gives' a matrix form for the surrogate

mean integrated square error of the linear estimator f.

Lemma 4.1 With the above definitions,

M (f;f) = n- 1 trW(l-eoeob)W + fT(I-WB)TrI-WB)f (4.2)

Proof Write f= , From (4.1) it follows that f = Wr7  where

ilv = n- X,/v(Yi). Each Yi has density g = Zgvy, where g = Bf, and for each v

Efri= f vgd = gv, so that Ef r7 = Bf. Hence Ef f = WBf, and the integrated square

bias

f(Ef-f)2d# = I4Ef-f112 = II WBf-fJ 2 = II(I-WB)f11 2  (4.3)

If f is the uniform density, then f = e0 and so, writing E1 for an expectation relative

to the uniform density f, El q = Be0 = e0 since b0 = 1.

By the orthonormality of the yV, the matrix Elf/rT = n- 1 1 and so 77 has

covariance matrix n-l(-e0eT) under the uniform distribution. Thus the surrogate
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variance term

Jvartifu = Eljlf- E 1 1 El 11W(17-E 1q)1I 2 = n-tlrW(-eoT)WT (4.4)

by a standard multivariate calculation. To complete the proof, substitute (4.3) and

(4.4) into the definition (2.4) of surrogate mean integrated square error.

03

Our second lemma provides an expression for the surrogate linear minimax risk

and gives the general form of the minimax estimator. The smoothness class F is

defined as in (2.8) and (2.9) to be :F = {f : fo-l, fTAf : 1 + C 2) where we write

A = diag(a2), and assume that ao = I,supa 2 = a, and that every f in F is non-

negative.

Lemma 4.2

inf sup M*(f;f) = n- I Zb 2 (1-a,. (4.5)

where y is chosen to ensure that

n -  ,b 2aY a'- 1)+ =C 2 . (4.6)
v*O

The minimax estimator is given by setting, in (4. 1),

wv = 3, for v=O and w, = 3, bt(1--ya,)+ otherwise. (4.7)

The form of the minimax estimator is worth noting, since it corresponds to a

diagonal matrix of weights and hence is an estimator of the form

f(x) = n - 1 , b- 1 u, /v(Yi)(ov(x). Although the derivation of the estimator has been

performed for theoretical reasons, some examples of the use of estimators of this kind

are given by Jones & Silverman (1989). Similar results to Lemma 4.2 exist for

standard regression (for example Pinsker, 1980, Speckman, 1985) and for other

nonparametric problems (for example Buckley et al., 1988). Our proof is an extension

of that of Speckman (1985, pp. 9 8 1-982).

Proof of Lemma 4.2 The condition fw(x,y)du(x) = I for a:l y implies that woo = I

and w0, = 0 for v + 0. Let W be the set of matrices W satisfying this condition and

for which y yw 2 < -; the matrices W in 'W correspond precisely to the estimators f
in 'Tu(n). We use Lemma 4.1 and find the minimax value of the expression (4.2)

over W in 'Wand f in :F. Let

J(W) =sup T l(I-WB)f112 + n- 1 trW(l-eoeT)wT "  (4.8)

Let W° be the matrix diag(w,,); we show that J(IV) > JW°), and hence that we may

restrict attention to diagonal matrices in Wt.
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For fixed i in N, ir 0, let Y, be the set{f= ( + fC p, a, }. Then

sup II (-WB)f 112 = sup X(wvo+Wv br fi-fv) 2 - sup [ WO+(w,, b,- I)fr }2
F. F". , F"

> ( 1 - wri br )2c a (4.9)

by picking out the K term from the summation and performing some elementary

algebra. Again by restricting the sum, we have

tr W(I-eoeoT WT = W , - W. (4.10)
V40 Xz#0 *

Restricting the supremum to f in uFr, and substituting (4.9) and (4.10), we obtain
1(W) > su(1-w,,b,)2 C2/a 2 + n-  , Z (W) (4.11)

V40

by checking that every inequality in our argument is an exact equality when W is

diagonal.

Let r = sup* 0 (I-wrb,,)2 a - 2 . Now reason from (4.11) as in S peckman (1985)

to obtain (4.7); then substitute into the expression for J(W ° ) in (4.11) and minimize

over r to complete the proof.

To obtain corresponding results for the direct case, set the operator P to the
identity in the whole of the preceding argument. The minimax surrogate risk r5D(n) is

given by (4.5) and (4.6) with all b. set to 1. The minimax estimator

n-1  w., 9,(Xj),(x) is a probability density estimate of tapered orthogonal series
L,v

form as introduced and studied by Watsoh (1969).

4.2 Integral approximation of the minimax risks

In this subsection we explicitly approximate the expression (4.5), and the

corresponding expression for the direct case, to complete the proof of Theorem 3.2.

We set F=Fp.c as in (2.4) so that ak=(]+1)P(k+l)P. The key to our treatment is the

following approximation lemma, obtained by approximating stms by integrals.

Lemma 4.3 For any 7, let Z,7) denote a sum over ((j,k): l<(j+l)(k+I)<rfl. For

fixed r> 0, as 7--oo,

-(7) (J+l)r(k+l)t = (r+l)-lr+ (log ii+2rE-(r+l ) - l } + 0(77i+) (4.12)

where yE is Euler'; constant, and

1:(r)(j+k+l)(j+l)'(k+ll)r I r - 7 r"2+2 0 7r 197) (.3~~~= - 'r2 -  + O(7r/rilogr/) . (4.13)
3
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Proof For the proof, we transform the sums by replacing j+ I by j and k+ I by k;

denote by 2(71 the sum over the transformed range j(j,k) :jl,k;1andl1<jk:5 q.

By symmetry in (j,k), the sum in (4.12) satisfies

1+S = Y[n] jrk] = 2Y k Jrk r .

k=1 j=l j-Ik=1

r
From the relation =ij -(r+l)-Itr+l + o(tr), we obtain

j=1

-( 2(r+l- ' i k{[ k-t]'+O(rk-)) - {(r+l)-1[i]'++O(/7rl2)}2 - 1

r+ i [l _[01 ~ ]r0] 1)-277r+l +01rj

= 2(r+l)-1lr I k- - Fk'(rtk-')"+  7 - (r+1+ O(rt"  )
k=1 k=1

= 2(r+l)- 17r+ 1 log 77+y+O(- - (r+l)-2r7r+l -, O(r7r+j), (4.14)

which yields the result of (4.12).

To deal with (4.13), we need an integral approximation, valid for s O and x>_1,
[xlI
, = (s+l-x + cSxs, 0-lcrj C, (4.15)

j=1

which follows from the bounds (s+l)-I(xls+l  < X. 1] d

j=1

< (s+1l)-[x+l sl. Assuming that 77 is an integer, it then follows that

= I ,kr X jrl = lkr(r+2)-l(k - 1 ) 2 + ,krC.7,7k 1)"
k=1 j=1 k=1 k=I

=(r+2)-I77r 2  k 2 + 0(77 Zk -

1 1

=2 (r+2)-r2 + O (+1log 77). (4.16)
6

To complete the proof of (4.13), transform the sum to

[(, k(jr+'kr+jkr1-jrkr). Then substitute (4.16) for each of the first two terms,

and use (4.15) to absorb the third term into the error. C

Completion of proof of Theorem 3.2. We will have ya2 < I if and only if

(j+1)(k+l) < ),- 1P and so the ( ), in (4.6) and (4.7) may be replaced by ( ) if the

sums over all v are replaced by (,7) with 77 = ,-<P. The constants c, will be defined

as in Table 3.2..

In the direct case, we replace 'TLI in (4.5) by 'TLD and set all b, to 1. Applying

(4.12), equation (4.6) becomes
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C2 = n- X (y-a, -a')

= n-1 , {r-(j+lYI/2(k+)P/2 - (j+1)P(k+l)P}

= n- I P+It (c7log?7+c 8 ) + n t O( 7P+i). (4.17)

The substitution 17= cly 1/(p+1) reduces equation (4.17) with the error term omitted to

the form y logy = c2nC 2 ; it follows that 17, as defined in (3.40) is the solution for 77 of

this equation. Apply similar manipulations to (4.5) to obtain

ro(n) = n-1 I(,,)(-ia.) = c3 n-17,,{log 77+C 4 ) + n-'0071),

completing the proof of (3.11). To prove (3.12), substitute the definition of 7, into

(3.11), and use the fact that a(x)=(x/logx){ 1+o(l)) for large x.

For the indirect case, we use the values (2.7) for the b. Equation (4.6) then

becomes

C 2 = n-' Z(,7) (j+k+l){ y-(j+l)p/2(k+l)P/2 -(j+l)P(k+l)P}

= Cgn-1 77p+ 2 + n-O(7P+'Iog77). (4.18)

where c9 =(;r2/3)p(p+2)-(p+4)- 1 . Set I" =(nC2/c9 )11(p+2), the solution to (4.18)

with the error omitted. Then the solution to (4.18) with the error included satisfies

=l,,+ O(log#,,). Substitute back into (4.5), apply Lemma 4.3, and perform some

elementary algebra to obtain (3.13), and hence to complete the proof of Theorem 3.2.

C3

To summarise this section, we have shown tnat, for linear estimators, the indirect

nature of the PET observations reduces the minimax rate of consistency in mean

integrated square error from 0((n/log n) -PI(P+1)) to O(n -P/P+2)). It will be shown

in the next section that these rates of consistency are both best possible even if we

allow the class of estimators to be extended to cover all linear and non-linear

estimators.

5. Lower bounds

In this section we establish lower bounds on the rates of consistency of arbitrary.

estimators based on direct and indirect observations. These lower bounds show that

the minimax rates obtained for linear estimators in Section 4 cannot be improved by

extending the class of estimators considered. As noted at the beginning of Section 4,

this will complete the proof of Theorem 3.1.
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5.1 Moduli of continuity and a general lower bound for global norms

Our approach is based on Fano's lemma of information theory, as developed by

Ibragimov and Hasminskii (e.g. 1981) and Birgd (1983), although a slight extension of

Birgd's formulation is needed for the indirect observation case. Although we continue

to focus on the PET example, it will be seen that the methodology applies quite

generally to estimation with global norms in linear inverse problems of both density

and regression estimation type.

The convergence rate in the indirect problem clearly depends on the operator P- 1

mapping the observable density g to the target density f. One convenient approach to

computing convergence rates has two parts: (i) compute a "modulus of continuity"

r(E) for P-', and (ii) argue that a lower bound to the minimax convergence rate is
given by (essentially) r(n-i). This approach separates stochastics and analysis: step

(ii) uses the information theory lemma to bound the estimation error by r(n-f) while

step (i) is a concrete optimisation problem for the particular operator in question. This
viewpoint was taken recently by Donoho and Liu (1989) in their study of estimation of

linear functionals. We begin with step (ii), which computes a modulus o(J) which is

more convenient for the problems at hand. We return to step (i) in Section 5.2 below.

Suppose, in general, there are available n i.i.d. observations Y( n) = (Y,....Y,,)

from a density g(y)dL,(y), yeD, and that we wish to estimate f = P-1g. We assume
that frFcH, and that F is a translate f(+H0 of a set H0 that is balanced about the

origin (hH 0 =-hEH0 ). Let M be a finite-dimensional subspace of H: we write IMI
for the dimension of *M and B,(S) for the open ball of radius 8 about 0 in M. The

norm of the restriction of P to M is defined by IPjIW = sup{IPhI/lhlf : heM 1.
Finally, let M5 = (M : B.W(S) c Ho). The modulus a(S) may now be defined as

a(S) = 8 inf{ 11 P11 M/IMI :MeMs}. (5.1)

Loosely speaking, a(S) measures the decay of the singular values of P relative to the

parameter space H0 at resolution J. Since a" is strictly increasing, a left-continuous

inverse r(e) = a-I(e) can be defined.

Let fET(n) be an arbitrary estimator based on y(n). The significance of the
modulus functional is that an (often sharp) lower bound for the rate of convergence of

Ilf - fAf over F is given by r(n-i). For the proof we need an additional assumption
bounding the Kullback-Leibler information divergence K(gc,go) = f log(gjga) ged

over G = PT:

For some A<o, K(g,,gg) _ Aiga-.g,-I for all ga,g EG. (5.2)

This condition will be satisfied provided the densities g in G are uniformly bounded

above and below away from zero. In the context of Theorem 3.1, this is a
consequence of (2.11) and (2.10).
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Proposition 5.1 If condition (5.2) holds, there exist constants dj ,d2 such that

inf sup E: I.f-fl 2 > dr 2 (d2n-i). (5.3)
fe T(n) A FH

Proof Choose a subset 50 = {f ... fJ c F that is 23-distinguishable : namely

Ilf,, - fall > 23 if a#18. Set ga = Pfa and write K4 (ga,gl) = nflog(ga/gO)gadX, the

Kullback-L,-Ibler discrepancy based on a sample of size n.

Consider the discrimination problem of choosing among the r hypotheses 0 .

Given an estimator feT(n), define a discrimination rule i(1y(')) taking values in 5r0

that picks the closest element in 5F0 to f9. Then, by elementary probability and analysis,

Sup Ef 11-f 111 : sup EfI1.f-fil 2 > : 3'sup Pf(ll-fl1>5)
fE~F f tyofe

I r r

52r-1 Z pf.(lYfll>,) - 8 2 r- 1 Y Pf. [v(Y1n))+fa}" (5.4)

a=1 a=I

since p(Y<'))#f, implies that I-ffll>J, because of the 2.5-dis,,.,guishability.

By Birgd's version (1983, p.196) of Fano's lemma, te average error rate in the

discrimination problem can be bounded below as follows:

r- Pf(,p(YIn )+fa) - I - { sup K'(ga,gl) + log 2)/log(r-l). (5.5)
a=1 l-a,/3<r

Combining (5.4) and (5.5), and substituting (5.2), we obtain the lower bound
-2 supup Pf-Pf j12+log2I/log(r-1). (5.6)

fEF 15 <a.,35_r

To make use of this lower bound, we use the metric dimension properties of F

and the operator P to construct a suitable set j0 for which r is large and

supIIPfa-PfIIK is small. From the definition (5.1) of the modulus a, choose a

subspace M of H for which BM( 4 3 ) c H0 and 4.IIPIIM/IM I <- 2c(45). A useful

lemma of approximation theory (e.g. Lorentz, 1966, p.905) asserts that a k dimensional

ball of radius R contains an R/2 distinguishable subset of cardinality at least 2k
.

Setting r=2IMI , use this lemma to choose h ,...,hr E BM( 46 ) such that

I ha-hp~l 2 26 and define the 26-distinguishable set FO by fa as f 0 + ha. for

a=1. r. By construction, for any a and 3,

IIPfa-Pfi < IIP [If-f112 < 6 MM (46) 2 .614 2  l6M (46')2 . (5.7)

Substituting back into (5.6), and performing some elementary algebra, we have

sup ,Ef [f-f 112 > 2 [1 - d3 nC 2 (46)] where d3 is an appropriate constant. Now

choose 6 so that d3na 2(46) = and the proof of Proposition 5.1 is complete.
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The estimation problem we study can be thought of as estimation of Qg, where

gG and Q (=P-1) is an unbounded operator. The term "modulus of continuity"

might be more appropriately applied to a measure of the rate of growth of the singular

values of Q relative to G. Indeed it is in this form that the similarity to the modulus of

Donoho and Liu (1989) is clearer. Now suppose that G is a translate g°+K o of a set

balanced about the origin in K. We denote finite dimensional balls about 0 in K by U.

Define the normalised radius p(U) to be the radius of U divided by the square root of

the dimension of U.

Define a generalised modulus of continuity of Q over the parameter space K0 by

f(e) = sup inf 1IQvI 11H, (5.8)

where the supremum is taken over the class of finite dimensional balls UcKo for

which p(U)=e. Notice that if Q is a linear functional (so that (H,I['IH) = (RI'-)),

the above definition reduces t~o

r(S) = sup (IQVl : 11V 11K = E and tveK0 for ItJ<_.l),

which is the modulus of continuity studied by Donoho and Liu (1989).

It can be shown that ? is approximately inversely related to the modulus a

defined at (5.1) in the sense that f(a(g)) (5. Thus ar-(e) _ f'(E), and so the lower

rate bounds derived from use of a are at least as good as those that would follow from

?'. It turns out that these rate bounds are in fact equivalent for all the applications

discussed in this paper. These results and extensions will be discussed more fully

elsewhere.

5.2 Completion of proof of Theorem 3.2

We now return to the PET setting to prove two propositions that complete the

Theorem 3.1. Both these are proved by finding reasonable lower bounds to r(E).

Proposition 5.2 Subject to the conditions of Theorem 3.1, there exists a constant

dD (p, C ) > 0 such that

rD(n) > do(logn/n)P/(P+l).

Proof Set H = K = L 2(BI ) and P = I. Let f 0 be the uniform density and

Ho = Fpc-f0 . A good upper bound for a(S) as defined in (5.1) can be obtained by

considering high dimensional subspaces M subject to the constraint that BW(3) c( HO.

For large r7, let M7 =span{o : a, < ,}. Then B.q,(,) c H0 when 7/P<C2Is 2.

From the definition of a(5), it follows that

a"2 (3) < 62/sup{ 1,141 1 : 17 < CZ/5 2 .
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Using Z to denote the characteristic function of a set, M, I =z{l<(j+l)(k+1)<5q}

= ilogn/{l+o(l)) by Lemma 4.3. Hence o02(8) < d4S 2(P+1)/P/iog -2 , from which it

follows that r 2(e) > d5 (e 2 log e-2)P/(P+t), so that r 2 (cn - i) E d6 (logn/n)P/(P+1).

Substitute back into Theorem 5.1 to complete the proof. 0

Proposition 5.3 Subject to the conditions of Theorem 3.1, there exists a constant

d,(p,C) > 0 such that

r1(n) > di(lln)P(P+2).

Proof Now take H and H0 as above, and let K be the Hilbert subspace of L2 (D,A)

generated by the orthonormal set of singular functions ( V. This time a good bound

for a(J) must use high dimensional subspaces (with BM(S) c Ho ) for which in

addition IIPJJM is small. For given i, set M = span(j 0 : ij+1-5q). Then IIPI12

= max{b 7) eM:} < 217-1, and IM,7 j -[Jnl]. As in the proof of Proposition 5.2,

BM,(3) c Ho if i7 P 5 C2 /32. Substituting into (5.1), we have, for sufficiently small

,5,

a 2(3) < 5 inf {2 -/[,i] : 17P<C 2/3 2) = d732(p+2)/p.

Consequently r 2(e) > dse /(p+2)*and r 2(cn -i) > dgn-/(p+2), which, as above, can

be substituted into Proposition 5.1 to complete the proof. 0

We close this section by remarking that Ibragimov and Hasminskii (1981) and

Stone (1982) have shown that the minimax rate of convergence of global mean

integrated square error for direct nonparametric density and regression problems is

n-p/(2p+d), where p is the assumed amount of smoothness and d is the dimension,

d=2 in our case. They consider classes of functions constrained by a Halder continuity

condition of order ae(0, I on the s th derivative, so that p=s+a. The extra logn term

in the rate of convergence (logn/n)2p/(4+d) obtained in the present paper reflects the

slightly reduced smoothness imposed by requiring only square-integrability of the pth

weak derivative.

6. Biased sampling and attenuation

In any practical PET scan, not all pairs of emitted photons are detected. We shall

show in this section that two of the main reasons for this incompleteness of sampling

can be placed within the same mathematical framework, and that our results can, in

part, be extended to account for them. Under mild assumptions, the incompleteness of

sampling has no effect on the minimax rate of consistency found in Theorem 3.1.
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6.1 The effect of the third dimension

Up to now, we have considered the detectors as forming a circle in the plane, and
we have assumed that all the paths of emitted photons fall in this plane. Of course, in

reality the detectors form a ring of finite thickness d>O, and the orientation of the line

of flight of the photons is uniformly distributed in R3 . We shall assume that the

emission density is constant over the thickness of the cylindrical slab enclosed by the

detector ring. Only emissions taking place in this slab will be considered, since only

they have any chance of being detected at all.

Given any emission, the photon line-of-flight is now parametrised by three

coordinates (sp,4p'), where (s,ip) are the coordinates in detector space of the
projection of the line onto the detector plane, and the vertical angle 'P'(-zr/2<'<' i2)

is the angle between the line and its projection. The assumption that the line has
uniformly distributed direction implies that, independently of (s,op), the vertical angle

has probability density I cos ip' dip'. An emission line will only be detected if its
vertical angle is such that both photons hit the detector ring. If the emission is

detected, only the coordinates s and p are observed.

Condition on a particular s and p, and let I = 2(1-s 2)J, the length of the
corresponding detector tube. Assume that an emission takes place at distance t from

7" the centre of the tube and at vertical position Z as shown in Figure 6.1. Assume that
the projection of the line of flight of the emitted photons has coordinates (s,ip). Let

(-q1P (P2) be the range of vertical angles over which both photons will hit the

detectors. For given 91 and p2 the probability of detection will be

fI2 Icos p' dp' = '(sin 91 + sin p2).

We have (see Figure 6.2)

Z/(t+ 1) if Z< (t+J1)d/i
tan '2 = (d-Z)/(2i-t) otherwise

By assumption, Z is uniformly distributed over (O,d). By elementary calculus, the

expected value of sin P2 over this distribution of Z is equal to

d- (fI+t)dIsin [tan -1 z/(!+t))] dz + d-1 ,sin [tan-' (d-z)/(1I-t)lldz
fo f(il+t)d/l

= d' (jl+t) fa/ I sin (tan-lu)du + d-'(l-t) 1/ in (tan- u)du

= d-11 ((l+d2 /I 2 )!-l} (6.1)

By symmetry, the expected value of sin 'po, and hence the expected probability of

detection conditional on s,t and P, will also be equal to the expression in (6.1). Note
that this probability is independent of r and only depends on the tube length 1.

Letting a3D(s,'p) be the probability that an emission in tube (s,(p) is actually detected,
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it follows from (6.1) that

a3 D(S,P) -- (4(l-s 2 )d-2 +lj - 2(1-s 2)id - I .

This quantity increases as s increases, reflecting the fact that emissions in shorter tubes

(large s ) are more likely to be detected. We have, finally,

0<(1+4d- 2)-2d - t < a(s,4p) < 1 for all se[O,1].

6.2 Attenuation

The other effect we shall consider is attenuation, defined as being the loss of a

detection caused by the absorption or scattering of one of the photons in flight. Let

us model the probability of such loss of a photon as it travels between x and x+dx as

S(x) I dx I and assume that g (x) is bounded. Suppose an emission occurs at a point

xo and that y is the line of flight of the emitted photons. Let y,(xo) and y_(xo) be the

half-lines of y emanating from xo , and assume y intersects the detector ring. By

standard Poisson process theory, the probability that neither photon will be lost is

given by

exp(-fy.(O) u(x)dxjexp(-fy_(XO)u(x)dx} = exp(-fu(x)dx) = aA(sp), say

Just as in Section 6.1, the probability that the emission will be detected depends only

on the detector tube (s,i) and is independent of the emission's position within that

tube. In general, if both effects are considered, the probability that any particular

detection will not be lost will be a3D (S,p)aA(s,,p). Both effects are important in

PET; intensities reconstructed ignoring them can, in practice, be too low by a factor of

three in the centre of the image (F. Natterer, personal communication). A common

technique for correcting for attenuation is to estimate it separately, for example by a

transmission scan.

6.3 A general framework and the extension of our results

The two effects we have discussed can be combined by assuming the existence of

a function a(s,ip), "O<a(sq)<1 such that a positron emission at (x ,x 2 ) gives rise to a

detection at (S,cD) as defined in Section 2.1 with probability a(S,cD) conditional on

(S,cD); with probability 1-a(S,(D) the detection is lost. It follows from this

formulation that the observed detections will form a biased sample with density in

detector space with respect to dA(s,p)

ga(s,(P) = Paf(s,) = a(s,(p)Pf(s,(p)/fD Pf(s,p') a(s,p')d. (s,p').

Let Tg(n) be the class of all estimators of f based on a sample of size n from Paf,

and let rB(n) be the minimax mean integrated square error over f in Tq(n) and f in

fp.C"



Theorem 6.1. Suppose that infDa(s,qp)= a0 >O, and make the assumptions of

Theorem 3.1. Then

rB(n) = n -P/(P+2). (6.2)

Proof. The order of magnitude in (6.2) is of course the same as that obtained for

unbiased indirect estimation in (3.5).

Suppose, first, that f is the least favourable density in !Fp.c for estimation by

estimators in 'T(n). Let n' = (ja0 n]. Suppose Y ,Y2I.... is an i.i.d. sequence drawn

from Pf. Construct an i.i.d. sequence Z1 .... from Paf by including each Yj in the

sequence with probability a(Y)>_a o . Let f be the estimator of f based on Z ,.. .Z,

using the minimax estimator in 'TB(n'), so that M ff) rs(n'). Now let N be the

number of Y1 .. ,Y, that are included in the Zj sequence, and let f1 be equal to f^ if

N :n' and I otherwise. Since f, is based on Y1 ,...,Y,, and f is least favourable for

'Tj(n), we have M(fI ;f)>-r(n). By an elementary argument, M~f 1 ;f)

< M(f;f) + P(N<n')f(f-1)'du, so that rB(n')_rt(n) - P(N<n'), making use of

Proposition 2.3 and the assumption C<21(P- t1) to bound f(f-1)2 by 1. A crude bound

now suffices for P(N<n'); since N is stochastically larger than a Bi(n,ao) random

variable, P(N<n') < P {Bi(n,ao) < Inao ) = O(n- 1) by Chebyshev's inequality.

We conclude that rB([Jnao]) - r1(n) - O(n- 1 ).

Now reverse the role of biased and unbiased samples throughout the argument.

If Z, .... is an i.i.d. sample from Paf, then a sample Y1 .... from Pf can be constructed

by including each Zi with probability ao/a(Zi); this quantity necessarily lies between

ao  and 1. The analogous argument to that used above yields that

rI((na0])r(n)-O(n- ') . Applying Theorem 3.1 it now follows that rB(n) has the
same order of magnitude n - p/(p+2) as ri(n). 1

There is of course a distinction between a biased sample of n observations drawn

from Paf and a censored sample consisting of all the observations that are detected

arising from n emissions in brain space. The censored sample will consist, in the
notation of the proof of Theorem 6.1, of N observations from Paf" Implicit in the

proof of Theorem 6.1 is a demonstration that the minimax mean integrated square

error for estimation based on this censored sample will have the same order of

magnitude as ri(n) under the assumption a0 >O.

For the third dimension effect, as the detector ri:. thickness d--+O, we have

a3 (s,(p)- d(l-s2)-0 and ao--+0. In the limiting case, the biased sample density will

be proportional to (l-s 2)-Pf(s,o), whose ratio to Pf(ss) is unbounded as s--l.

Theorem 6.1 no longer applies, but it can be shown that the biased sampling has at

most a logarithmic order effect, in that the order of magnitude of rB(n) lies between

(n log n)-P/ (P+2) and n -PI(p+2) . This is a consequence of the following more general
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result on singular biased sampling, whose proof is omitted.

Theorem 6.2: Suppose pa 1 and 0<C<21(P- ') .

(a) If fDa(s,,)-(1-s2 )-1d;(s,'4) <0, then there exists c1  such that
r ( n)" <c t n -#1(P2).0

(bl) If fa(sp)(l-s2)-'dX(s,4)<-, then there exists c2  such that

rH(n)"c 2n-p/(p+2).

(b2) If Ja(.,()d(s,)<e, and sups (l-s2)0J2xa(s,,)dP<o, then there exists C3

such that rB (n ) _.c3 (n log n) -PI(P+2).

For a(s,i)=(l-s 2)- , the conditions of (a) and (b2) hold but the integral in (bl) is

infinite.

7. Alternative error measures

Our results can be extended to some more general measures of the discrepancy

between the estimator and the unknown function than mean integrated square error.
We can treat a class of losses that takes into account the closeness of derivatives, as

well as values, of the estimate to those of the true unknown function; these losses take

more account of the "shape" of the function than does ordinary mean integrated square

error.

Define measures p, as in Proposition 2.2. It is noted in the Appendix that, for

integers q>0, the squared norm

f If 1di 1 + f rdY, f fd*" Idxzj2 dq+1 (7.1)
r, +r 2=q

is equivalent to

f 2 = E (j+I)q(k+l) f1
2 "  (7.2)

j.k>O

For non-integer values of q, the norm I1iI'q will be a more general Sobolev norm

(Adams, 1975), although some care will be necessary because of the nonstandard

dominating measures/.,,; this is a topic for future investigation.

We can now state and prove a theorem that gives the exact minimax rates in the

1'Iq norm for both direct and indirect estimation. Theorem 3.1 is the special case

q=O and it can be seen that the rates avail-ble are both reduced, in a natural way,
when higher order norms are used.
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Theorem 7.1: For fixed p>_l, 0<C<2i(P- ' ) , and Oq<p,

inf sup Ellf.-f = (logn/n)(P- q)/ (P+ 1)

JE't(fn) fefc(l

and

inf sup EIIf-f 11 = (I1n)(p- q)1 p 2) .

feT"(n) fG Y,.cq

Proof The proof is analogous to that of Theorem 3.1 and we shall confine ourselves
to a brief outline of the necessary changes, Define c2=cij=(j+l)(k+)q and
r=diag(c,). To obtain upper bounds, define the surrogate risk Mq(fJ)
, v (var f, + (Eff, -f,,) ). The result corresponding to Proposition 2.1 is immedi-

ate. As in Lemma 4.1, M ^(f;f)= n-ltrrW(-eoeOT)WTr+ IIr(!-wB)f1l 2 . As in
Lemma 4.2, the minimax surrogate risk for linear estimates over the ellipsoid Fp,c is
given by n - '(r)) (2b- 2-cb- 2ar1 ), where y is chosen to satisfy

n - ,(,)(aVcbv y-a ~b)=C. So long as q<p, we obtain surrogate linear
minimax rates of convergence equal to (n/logn)-(p-q)/(p+I ) and n-(p-q)(p+2) in the
direct and indirect cases respectively. Clearly it would be possible to obtain more pre-
cise results corresponding to Theorem 3.2, but we shall refrain from doing so.

The methods of Section 5 show that these are in fact the exact minimax rates of
convergence for the 111 1q norm for general estimators. From Proposition 5.1, it is only
necessary to compute the modulus a(6) of (5.1), now with respect to the U'Ui1q norm

on H. This calculation goes as in Propositions 5.2 and 5.3, even using the same defini-
tions of the subspaces Mr7. Since the '1-11q norm is now used on H,

,IPII = sup(bc V 7c • M and BM,(5) c H0 if rP-q<C 2/8 2 . With these
changes, the proof is completed. C

8. Sorre concluding remarks

This paper has focused on lower and upper bounds for one particular bivariate
density estimation problem for indirect data. The same formalism applies to many
other density and regression estimation problems. The celebrated "unfolding" problem
for sphere size distributions is an example involving univariate density estimation from
indirect data and the singular value decomposition of the Abel transform. For recent
results and further references on this problem, see, for example, Hall and Smith
(1988), Nychka and Cox (1984), Silverman et al. (1988) and Wilson (1988),

Noisy integral equations of the form yi=(Pf)(ti)+Ei can be treated using our
methods, at least under appropriate assumptions on the distributions of (ti,ci). For

example, if the observation points ti follow a known aistribution .(dt) and-the errors
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ei are independently Gaussian (0,a 2), then the information divergence between the
hypotheses f, and f 2 is K(P M), Pf2)) = !nf{Pfi()-Pf2 ()} 2),(d), so that the lower

bound methods of Section 5 immediatedly apply. Upper bound results are given, for
example, by Nychka and Cox (1984).

For a generic one-dimensional problem with singular value decomposition
Pqr=byv~, bv-v - , and with ellipsoid determined by a2=v2a, corresponding to "a

derivatives", the exact minimax rate of convergence of the mean square error in

n- 2a1t2a+' + ') . This should be compared with the exact rate of n- 2a /(2a + ' ) for the
corresponding "direct" case. Related calculations for a large class of one-dimensional
convolution equation models appear in Wahba and Wang (1987).

One important topic for future attention is the effect of the discretisation of detec-
tor space due to the finite size of the detectors. It is clear intuitively that if the
number of detectors is sufficiently large relative to the size of the sample collected,

then the minimax rates will not be affected, aifd of course it would be interesting to
quantify this notion more precisely. Some PET machines (see, for example, Snyder
and Politte, 1983) are able to use time-of-flight information to provide an approximate
indication of the place in the detector tube where an emission occurs. This is usually
accompanied by a loss in detector efficiency and hence a smaller sample size n. It
would be desirable to extend our framework to make a quantitative evaluation of this
trade-off. Kaufman, Morgenthaler and Vardi (1983) report some earlier work on this
issue.

Another issue that could be explored is the further extension of cur results to deal
with more general metrics on images. Finally there is very little known about the
theoretical performance of algorithms commonly used in practice; our results at least

provide a framework and a benchmark against which particular algorithms can be

judged.

APPENDIX

Proof of Proposition 2.1: The proof is elementary. Consider the direct case first.
Suppose _ is a random variable drawn from the uniform density and that X is a
random variable with density f. Then varff(x)/var 1 f(x)

n- 1 varw(x,X)/n-1varw(x,-). Now

varw(x,X) < E{w(r,X)-Ew(x,-)} 2 = {w(x'?")-Ew(x,=)}2f(')dA( )

< supBff(w(x,;)-Ew(x,'=)}2d = supBfvarw(x,..)

and similarly varw(x,--) < supB(l/f),,-r;'.x,X) = varw(x,X)infsf. Thus

varf'/varf, and hence M/M*, is bounded between inff and sup f. In the indirect
case an exactly analogous argument bounds M/M* between infDPf and SUPDPf. It
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follows from (2.1) that infDPf 2! infgf and that supDPf S supBf, completing the proof.

Proof of Proposition 2.2: We employ Gegenbauer (ultraspherical) polynomials as

normalised in Gradshteyn and Ryzhik (1980, p.827). An orthogonal basis for

L 2(B,,u,) is given by the polynomials

j(,) = (2Jr)- x 2o1ei(J-k)8C +k(u'rx)do j,k20, ue=(cosO,sin )T

Defining the operator (Paf)(s,9)=E{f(X)IueTX=s) where X-~i, the polynomials
- are the pullback by the adj6int Pa of the singular functions e i C-k)eCj+k(s) of

PaP*. This construction of the SVD of P, is explained in Johnstone (1988),
following Davison (1981, 1983) but with different notation and normalisations. It can
be shown that i =i(+k+1-iqjk, so that f = F(j+k+ 1)Ifjk-1.

Let D, = J(d/dx1 - idldx.2 ) and D= (d/dx1 + id/dx2 ). Since (d/dt)C.=-2aC 1,
we have, setting jjk=0 if j or k<O, D, j = Ja.ilk and D-k = a' +II. The raising

of the index from a to a+ 1 leads us from the original measure p of Section 2 to the
family up,,, so that, for example, the family of derivatives Dq and Dz is

orthogonal with respect to u2, not AL.

It is shown in Johnstone (1989) that if r+s=p, then, for certain ccnstants cjks all

falling in [(p+1) - 2P+' ,(p+-1)p 2P],

r(DrDSf) 2dp+= p!X (J+k+l)f 2 f( -) 2d
Z' i- jjk+ k j-r~k-s) dp-I-

j _r

ks

= y c/js(j+)P(k+l)(p+l)f2
jar
kzs

Standard arguments of analysis complete the proof.

Proof of Proposition 2.3: In the complex form of the basis, we have

f(r,6) = E fjk (J+k+l)tei(i-k)Oz+kkI(r).
(jk)EJN'

Zernike polynomials satisfy sup IZ(r)! = Z,,(1) = 1, as a consequence of the
0<r_ I

representation in terms of Jacobi polynomials: Z1+2s(r) - r'P °")(2r2 -I), together
with the results of Szeg6 (1939, p.163), applied to the polynomials Qs'(r)=Ps. '(2t-l)

as s varies. Hence

suplf-l1_ (1~ ~ if
V(O. 0)

The ellipsoid FpC has exactly the same description in terms of either the real or the
complex form of the basis. Setting xjk = (j+ l/(k+I )P2 Ifk/. we obtain

27



sup supif-If < C sup ( (j+k+l)I(j+l)-Pz(k+l)-P'2xjk : Xj<l
Fp, c N'\(, 0) N'\(0.0)

:5 C su (j+k+1)4(j+l)-PI2(k+l) - P/2 = C 2(' - P) 2 ,

N'\(O, 0)

provided p l. To complete the proof, note that the linear function 1 + 2(1-P)/2CrcosO

falls in !Fpc and satisfies sup If-Il C 2(1-p)12.
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TABLE 1

Constants needed for Theorem 32. Euler's constant yE --0.57722...

CI = exp(-c8/c 7) C5 = (p+1)1/(P+1)cf4(P+1)

C2 = c ' (p+ 1) exp{(p+ 1)c8/c 7  C6 = ( r2p/3(p+4) }p/(p+2)(p+2)2 / (p+2)

C3 =p(p+2) - l  C7 = p(p+l)-(p+2) -1

c4= 2rE-(p+4)/(p+2) c8 = 2yEC7-(4(p+2)- 2-(p+1) - 2)

TABLE 2

Equivalent direct sample sizes m *(n) to achieve the same surrogate linear

minimax risk over smoothness class p as for an indirect sample of size n.

n= 107  n=108  ratio m(10)/m(10 7 )

p=l 1.93x 101 1.03x 106  5.34

p=2 4.85x 10 3.12x 106  6.44

p=5 1.29x 106  1.05x 107  8.09

Figure Captions

Fig. 2.1. The patient and the detector circle

Fig. 2.2. Parametrising the line I

Fig. 2.3. Transforming the coordinates

Fig. 6.1. The two cases for 92
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A Smoothed EM Approach to a Class of Problems in
Image Analysis and Integral Equations

By B.W. SILVERMAN, M.C. JONES, J.D. WILSON and D.W. NYCHKA
University of Bath, UK North Carolina State University, USA

SUMMARY

There are many practical problems where the observed data are not drawn directly
from the density g of real interest, but rather from another distribution derived from g
by the application of an integral operator. The estimation of g then entails both
statistical and numerical difficulties. A natural statistical approach is by maximum
likelihood, conveniently implemented using the EM algorithm, but this provides
unsatisfactory reconstructions of g. In this paper, we modify the maximum
likelihood / EM approach by introducing a simple smoothing step at each EM
iteration. In our experience, this algorithm converges in relatively few iterations to
good estimates of g that do not depend on the choice of starting configuration. Some
theoretical background is given that heuristically relates this smoothed EM algorithm
to a maximum penalised likelihood approach. Two applications are considered in
detail. The first is the classical stereology problem of determining particle size
distributions from data collected on a plane section through a composite medium. The
second concerns the recovery of the structure of a section of the human body from
external observations obtained by positron emission tomography; for this problem, we
also suggest several technical improvements on existing methodology, in particular, a
new pixellation of the circular image.

Keywords: ILL POSED PROBLEMS; INDIRECT OBSERVATIONS; INTENSITY
ESTIMATION; MAXIMUM LIKELIHOOD; PENALISED
LIKELIHOOD; POSITRON EMISSION TOMOGRAPHY; SMOOTHING;

STEREOLOGY.
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1. IRODUCTION

A wide variety of practical problems, in fields ranging from medicine to remote sens-

ing, involve indirect observations. Suppose that events occur on a space Y according

to a nonhomogeneous Poisson process of rate g(y). These events cannot be observed

directly; instead, an event at a point y gives rise to an observable datum at a point x in

some space X. The observed datapoints fall as a nonhomogeneous Poisson process on

X with intensity f(r), where f and g are related by the integral equation

f(x) = J K(x,y) g(y) y (1.1)

Here, K(x,y) is a non-negative kernel fiunction which is assumed known. L-, some

contexts X and Y are the same space, but we shall see that this is by no means always

the case.

In this paper, we shall introduce and discuss a simple general approach to the

estintion of the non-negative function g from such indirect data. The general prob-
lem, and our solution to it, will be discussed in two particular contexts. The first,

involving univariate functions, is the classical stereology problem of determining

particle-size distributions from data collected on plane sections through a composite

medium. The second is an interesting image processing problem, the recovery of the

structure of a section of a radioactive emission intensity in the human body from exter-

nal observations obtained by positron emission tomography (PET). Our intention is to

contribute concretely to these problems and also methodologically more generally.

Equations of the form (1.1) are called first kind integral equations and have been

the subject of much study by numerical analysts, mainly from the point of view that

the function f is observed accurately. Most of this work does not take account of con-

straints on g. Another, more statistical, problem that has been studied is the case where
values of f itself are observed subject to random error, see, for example, Titterington

(1985a) and O'Sullivan (1986). The relationship of this statistical problem to the one

we shall discuss is precisely that between regression and density estimation for directly

observed data. The problems have some similarities but sufficient differences to make

distinct approaches appropriate.

Our work builds on the paper of Vardi, Shepp and Kaufman (1985) who give a

good introduction to the statistical aspects of the PET problem. and provide a method

for its solution based on the EM algorithm (Dempster, Laird and Rubin, 1977, Little

and Rubin, 1987). In general, a natural statistical approach to the estimation of g is by
maximum likelihood (ML) and it is to the solution of the ML problem that the EM

algorithm is addressed. However, as we shall see, ML reconstructions of g are unsatis-

factory. As in nonparametric curve and surface estimation generally, ML yields "noisy"

or "spiky" estimates that do not fully reflect knowledge about the structure of the prob-

lem under consideration, and some kind of smoothing is necessary to provide good
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estimates of g; see, for example, Silverman (1985a, 1986) and Besag (1986). This is

because of the high or infinite dimensionality of the parameter space. In the problem

we are considering, the ill-posed nature of the inversion of the integral equation (1.1)

exacerbates this difficulty. The classical mathematical work on integral equations (e.g.

Tikhonov and Arsenin, 1977) makes it clear that smoothing would be necessary in

numerical reality even if f were observed to arbitrary accuracy, for example, from an

infinite number of observations.

The EM algorithm is an iterative approach that increases the likelihood of the

estimate of g at each iteration. Each stage of the algorithm consists of an E (for expec-

ration) step and an M (for maximisation) step. Our proposal is to introduce a third S

(for smoothing) step at each iteration where the current estimate of g is smoothed in a

suitable way. The EMS algorithm maintains various advantages of the EM algorithm

but appears to eliminate some of its disadvantages. Using very simple smoothing

schemes, we have found that the algorithm converges, in a relatively small number of

iterations, to good estimates of g. For the problems we shall discuss, a little smoothing

goes a long way.

The general structure of such smoothed EM algorithms for indirect observation

problems is set out in Section 2. The stereology example is discussed in detail in Sec-

tion 3 and the PET example in Section 4. Our treatment of the PET example incor-

porates some other algorithmic improvements over those of Vardi et al. (1985) and

others. Some theoretical background is given in Section 5 that heuristically relates the

EMS algorithm to a maximum penalised likelihood approach in which the penalty term

is quadratic in the square roots of the intensities.

2. THE EM ALGORITHM AND SMOOTHING

2.1 Notation and Preliminaries

For practical reasons, the data with which we are concerned arise in histogram

form, so the data space X will be divided into bins. Index the data bins by t=l ,...T

and denote the observed counts in these bins by n(t), t= 1,... ,T. To facilitate recon-

struction, we also introduce a discretisation of the space Y into bins; let s=l ,...S

index these "reconstruction" bins. Note that the discretisation of the data-gathering

aspect of both our applications is an irremovable physical constraint, while the recon-

struction discretisation arises from algorithmic considerations. We shall seek to recon-

struct the discretised version of g in (1.1), denoting expected total occurrences in bin s

by A(s), s=l,...,S. The discretised version of the kernel function will be denoted by

p(s,t), s=1,...S, t=l,...,T; assuming that g is constant within each bin, p(s,t) is the

integral of K(x,y) over x in bin t and y in bin s, divided by the size of bin s. Write
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q(s) =Fp(s,i), s=l,...,S. Neglecting the variation of K over bin s, we have the
t

appealing interpretation

p(st)/q(s) = Probj datum counted in bin t I datum is observed,

having arisen from an event in bin s).

Define k(s,t) to be the number of events occurring in bin s which contribute to

the count in bin t. It is immediately clear that all the k(s,t)'s are independent with,

for each s and t,

k(s,t) - Poisson [{(s)p(s,t)).

The observed data arise simply from these as n(t) = Fk(st) so that, for t=l ,.. .T,
S

n(t) - Poisson {YA(s)p(s,t)), (2.1)
$

independently for each r. On the other hand, an important set of unobservablcs is the

s-bin counts, r(s) = ,k(s,t), s=l,...,S. All these m's are also mutually independent

and distributed as:

m(s) - Poisson {A(s)q(s)).

Define m = (m(l),...,m(S))T, n = (n(l),...,n(T))T , t = (2(l) ..... (S))T and k to
be the (SxT) matrix with (s,)'th element k(s,t).

22 The EM Algorithm

Consider the estimation of A by maximising the log likelihood, l(n I A), based on

the data n. These data can be regarded as an incomplete version of the complete data,

k, which we would like to have been able to observe. Dempster et al.'s (1977) EM

algorithm, applied to the PET version of the present context by Vardi et al. (1985),

then gives a two step iteration for increasing the likelihood of a current estimate Ai)

of A. In the E step for the current problem, we find the expected value of the complete

data, given the incomplete data, under the current estimate of parameter values; in the

M step, we find the ML estimate of the parameters using the estimated complete data

from the E step. From Vardi et al. (1985), this gives:

E STEP

compute k(s,t) = n(t) 2)s)p(s't) for each s and t,

r
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M STEP

set A(i1')(s) = k(s,t)/ q(s) for each s.

The two steps combine to give the simple updating formula

,(i+)(s) = ;L)(s) Yn(t) p(s,t)/q(s) (2.2)
t~~ .,()(r)p (r, t)

r

for s= 1,... S. An even simpler interpretation of EM is possible in this case, most obvi-

ously if we treat m rather than k as the complete daa: estimate m by its current

expectation, fli ), given .1 and n, use th( ) as the "new data", then iterate.

As well as its conceptual simplicity, the EM algorithm has other apparently

appealing properties. First, it necessarily increases the log likelihood at each iteration

(Dempster et al., 1977) and, since the log likelihood at (2.1) is concave, convergence

of the algorithm is guaranteed in theory. There is not usually, however, a unique ML

solution (certainly not when S > T), so the EM converges to one of the reconstruc-

tions maximising the likelihood, that one depending on the choice of the initial values

,( ) . A second consideration is that each A' (s) is automatically non-negative pro-

vided the initial image is. Taking account of this non-negativity constraint can be

important; see, for example, Bertero and Dovi (1981). In methods other than EM, this

constraint needs to be incorporated at considerable cost in computational complexity or

else ignored with detrimental repercussions for quality of reconstruction. Thirdly, we

note, as do Vardi et al. (1985), that the EM updating formula (2.2) also arises directly

from the likelihood at (2.1) as an iterative solution to the Kuhn-Tucker conditions for a

maximum. The EM is just one possible optimisation algorithm for this problem and

the question arises whether there are advantages to be had using ar altermative optimi-

sation technique. Kaufman (1987) investigates this in the PET context. Although it is

possible to accelerate the optimisation in its early stages, the EM proves to be a sensi-

ble approach to the computation of ML estimates. Kaufman (1987) argues that it can

be thought of as a "preconditioned" steepest. ascent method, having properties similar

to steepest ascent in many situations and considerably improving on it in others.

Vardi et al. (1985), however, found that in practice the convergence to an ML

estimate is exceedingly slow. Furthermore, as the iterations proceeded beyond a certain

point, the quality of the reconstructions actually deteriorated, and we shall see, in the

computationally simpler problem of Section 3, that an ML estimate itself is unsatisfac-

tory. Their proposed solution was to start with a uniform image and to abandon any

attempt to iterate to convergence: instead, they terminate the process after a chosen

number of steps (probably a long way from convergence). In this way, Vardi et al.

(1985) obtained pleasing reconstructions for the PET problem.
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We feel it is philosophically more satisfactory to abandon the aim of finding ML

estimates altogether and to replace the technique just described by an explicit smooth-

ing procedure. Also, we seek estimates that are the realisable limits of an algorithm

that actually converges in a reasonably small number of iterations and that yields

results independent of the starting configuration. We must stress, however, that we

wish to build on, and not to disparage, the very important work of Vardi et al. (1985),

without which the present paper would not have been possible. Indeed, Vardi et al.

themselves suggested that some smoothing might improve PET reconstructions.

22.1 The EM,, Algorithm

In order to provide smoother estimates of A than those given by ML, an appealing

approach is regularisation or penalised maximum likelihood (see, for example, Silver-

man, 1985b, and Titterington, 1985b): instead of maximising I(nJA), maximise

l(n1l) - R(2). (2.3)

Here, -R(1) might be interpreted as a log prior density for A in a Bayesian framework

or as a penalty term which discourages roughness in a penalised likelihood approach.

Choosing A to maximise (2.3) can in principle be achieved by EM methods too, as

noted by Dempster er al. (1977), to give, say, an EMp algorithm:

E STEP as for EM,

Mp STEP

Cad ).(i+ ) by maximising I [k(s,t) logA(s)p(s,t)) - A(s)p(s,t) - R().
S t

Repeating E and Mp steps affords convergence to a maximum penalised likelihood

solution as required; what is more, com,"rgence can be expected to be rather quicker

than the basic EM.

Computational considerations, however, militate against performing the MP step

at each iteration of an EMp algorithm; comparison with the trivial M step of EM for

Poisson likelihoods emphasises the extra burden. The Ni step involves a full penalised

likelihood reconstruction for the case where the data depend on the intensity function

of interest through a Poisson likelihood. In any context where A is a pixel image, the

important work of Greig, Porteous and Seheult (1986) casts doubt on the existence of

any method at present for actually achieving the penalised likelihood solution, although

of course it would be an interesting avenue for investigation to apply the image pro-

cessing methods of Besag (1986) in an Mp step.
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23 The EMS Algorithm

Our proposed approach is slightly ad hoc, but is very straightforward. We suggest

introducing a further step which smooths the result of E and M steps in a simple way.

This gives an EMS algorithm:

E STEP as for EM,

M STEP as for EM, except call the output a(i+ t), say,

S STEP

smooth ,i(i+t) to give Z(i+ 1).

For the problems of interest in this paper, this becomes the iteration: update by (2.2)

and smooth. (If, as in the PET application of Section 4, the reconstruction bin sizes

(a(s)) differ, apply the smoother to the jL(i+')(s)/a(s) values then multiply the

resulting values by the corresponding a's to get 1(i+1).) This EMS approach is the

major tool used throughout ihe rest of the paper.

Choice of appropriate smoothing method is problem dependent and will be con-

sidered in Sections 3 and 4 although it turns out that similar methods in both contexts

prove useful even though the perception of what constitutes "smooth" is somewhat dif-

ferent in the two problems. Sensible smoothing schemes should retain automatic non-

negativity. We no longer have an appealing direct interpretation of a reconstruction

obtained by EMS in terms of the solution of a specified optimization problem,

although the work of Section 5 yields a heuristic relationship with such an approach.

This backs up our empirical evidence which suggests that sensible smoothing regimes

allow the EMS algorithm to converge, and that at an increased rate compared with

EM, due to the smoothing. Moreover, it seems from our empirical experience that we

can expect convergence to a unique solution.

3. A FIRST APPLICATION : STEREOLOGY

3.1 The Probhem

A classical problem in stereology is the following. A three-dimensional specimen

consists of some translucent material in which are situated a number of opaque non-

overlapping spheres. Interest centres on the size distribution of these spheres; in an

example considered later, they represent tumours in the liver of a mouse. It is not pos-

sible to observe the three-dimensional internal structure directly. Rather, a thin slice is

taken through the specimen at some random orientation. When this section is exam-

ined, usually under a microscope, a number of circles is observed, each corresponding

.to a slice through one of those spheres which happen to be cut by the section. Our aim

is to recover the intensity of the radii of the spheres in the medium from this sample
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of circle radii.

We make the standard assumption (that cannot be more than approximately true)

that the centres of the spheres are distributed according to a three-dimensional Poisson

process with constant intensity. The sphere radii ae bounded above by Y, say, a con-

stant determined by the practical context. A further practical constraint introduces a

lower bound s, say; circle radii smaller than s cannot physically be observed. Thus, we

are concerned with a truncated circle radius intensity f(x), x e X = [e,Y], and seek to

reconstruct a similarly truncated version g(y), y e Y = X, of the sphere radius intensity.

Both e and Y are assumed known. The relationship between f and g can be written in

a form directly comparable with (1.1):

f(x) = cc f - g(y) dy. (3.1)
(y 2_x

2)1

Here, I,(y) is the indicator function (I if y e 0, 0 otherwise) and c, is 1 constant. This

equation was first derived by Wicksell (1925) for the case e = 0 and extended to e * 0

in many subsequent papers (see Cruz-Orive, 1983). The il-posedness of the kernel

function in (3. 1) arises, intuitively, because circles of a given radius can be obtained

from sections through spheres of any radius larger than that observed.

Discretisation of (3.1) proceeds exactly as set out in Section 2. All quantities

defined there transfer directly to the stereology context and we retain the same notation

in this section; s-bin quantities are now to do with sphere radii, t-bins with circle radii

In the real data example treated briefly in Section 3.4, circle radii were, indeed,

recorded in binned form only; these bins and our reconstruction bins are all of equal

width. The form of the kernel in (3.1) allows exact computation of the p(s,t)'s in a

straightforward manner.

Alternative approaches to estimating g in (3.1) are reviewed by Cruz-Orive (1983)

and Nychka er al. (1984). Cruz-Orive (1983) also discusses some other practical diffi-

culties which, for simplicity, we have omitted. Not all that many previously proposed

solutions have been statistical in nature and, of these, very few have resulted from a

nonparametric approach. A notable exception is the method proposed by Nychka et al.

(1984) which is discussed in Section 3.3; this paper inspired much of the simulation

and practical work reported here. Further details of the application of the EMS algo-

rithm to the stereology problem and more empirical evidence are reported in Wilson

(1987).

32 EM and EMS Reconstructions for Simulated Data

In this section, we apply EM and EMS algorithms to simulated data from the

stereology problem. Following Nychka et al. (1984), we chose e=0.04 and Y=0.4

and considered two particuiar choices of g: appropriately truncated versions of a
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Weibull density, g(y) = afyp- 1 exp(-ay'8), with parameters a = 12 and .= 0.1, and

of a mixture of two normals, one with mean 0.15 chosen with probability 0.7, the

other with mean 0.275 and both with standard deviation 0.03. This scaling (in millim-

eter units) and the Weibull density were chosen to imitate theoretically the real data

situation described in Section 3.4; this is Nychka et al.'s "Experiment 1". The bimodal

normal mixture follows "Experiment 3" of Nychka et al. and was chosen to test the

ability of the reconstruction methods to recover distinct peaks in an intensity. It is not

difficult to generate data (from J) by mimicking the physical process: choose a candi-

date sphere radius from the distribution with density g, decide whether this sphere was

cut by a random section using an acceptance /rejection technique (resulting in a sphere

radius from the length-biased distribution corresponding to g) and then determine the

corresponding circle radius by slicing the sphere at a uniformly distributed distance

from its centre. For further details, see Wilson (1987). Again to be roughly compar-

able with the work of Nychka et al. (1984), we generated an average of 190 circle

radii in each simulation of the Weibull case and 330 for the normal mixture. These

data were grouped into T = 50 bins.

3.2.1 EM Reconstructions

Typical ML estimates, using S = 50 reconstruction bins, are shown in Figs 3.1 and

3.2 for the Weibull and normal mixture cases, respectively. In these and all remaining

figures in Section 3, g is represented by a broken line and the estimate of g by a solid

line. The spiky nature of these EM reconstructions has already been alluded to; Figs

3.1 and 3.2 are genuinely representative of the kind of reconstruction always preferred

by ML and are clearly unacceptable as estimates of g. Incidentally, in this instance

early termination of the EM algorithm, even though started from a uniform initial allo-
cation, is not an effective remedy.

3.2.2 Local Smoothing

Smoothness of an intensity function can be defined in a number of ways. For

current purposes, however, a heuristic notion of smooth as (in binned form) values in

neighbouring bins "differing little" will suffice. We propose using a very simple

smoother to have this effect; we claim no "optimality" properties for our choice, but

appeal to its practical effectiveness and simplicity as justification for its use. The

scheme is a weighted average of a bin value and the values of its nearest neighbours,

using binomial weighting factors. Recalling the notation used in the definition of the

EMS algorithm in Section 2, we set

.(i+I)(s) = 2 -2J 2 r2I] A (i+')(s+r).
r=-j +
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Typically, such J-point smoothing, where J = 2j+1, is used for J = 3,5,7,9 or perhaps

11; the greater is J, the more smoothing is applied. Various modifications are possible

at the ends of the range of bins; Wilson (1987) describes the one used here.

3.2.3 EMS Reconstructions

In this form, EMS maintains the EM property of automatically scaling successive

estimates so that 11,(')(s) = N for ia 1, where Nfn(t) is the total number of cir-
S t

cles in the section. We then normalise and join the estimated values at bin midpoints

by straight lines to obtain a frequency polygon, calling this I; it is the density estimate

displayed in the figures.

Employing the EMS algorithm with 5-point smoothing to the normal mixture data
which gave rise to Fig. 3.2 produces Fig. 3.3. The improvement in quality of recon-

struction with the introduction of smoothing is strikingly dramatic. Indeed, this EMS
reconstruction provides an excellent estimate of g.

Not all EMS estimates, however, provide quite such good reconstructions. To

measure the discrepancy between g and ^, we essentially use the L1 distance
Y

Ig(y)-g(y) I dy, approximated by
$

A = b 1g, -Li,
s=I

where g, and ^ are the values of g and ^ at the midpoints of the s-bins, and

b=S- 1 (Y-e) is the bin width. In all, ten different datasets (of essentially the same
size) were generated from the normal mixture model and EMS reconstructions (with

1=5) performed. According to A, ^ of Fig. 3.3 is the second best of the ten
(A =0. 1251), the best having A =0.1198 and the worst corresponding to A =0.3243.

This worst reconstruction is shown in Fig. 3.4. One striking feature in this picture is

the poor behaviour of § near e. This effect was observed in a minority of cases and

appears to be due to an inherent numerical and statistical instability, possibly con-
nected with the lack of information at small circle radii. Nychka et al. (1984) noted the

same phenomenon; Wilson (1987) shows that the difficulty sometimes disappears if the

data are re-binned. The other disappointing aspect of this ^ is its behaviour where

there is a trough in g; having said that, zhere is certainly still some hint of the underly-

ing bimodality or, at least, of a strong indication that g is not unimodal. Most of the

ten simulated datasets resulted in rather better estimates of g, however.

A further important advantage of the EMS algorithm over basic EM is also well
illustrated by these simulations, namely, an enormous improvement in the computer

time taken to reach the solution. Using the convergence criterion "stop as soon as
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to complete; the EMS reconstructions of Figs 3.3 and 3.4 took just 39 and 29 itera-
tions, respectively. Since the binomial smoothing step adds only a very small extra

computational burden to each iteration, these savings are impressive. Uniqueness of

EMS reconstructions also seems to hold: in experiments with different starting confi-

gurations, we have never obtained more than a single solution per daaseL

We have not considered automatic choice of the smoothing parameter J; rather, a

more subjective approach has been found to work well. Reconstructions using J = 3,

then J = 5, 7 etc., can be looked at in turn, the process stopping when major features

in the estimate start to disappear. In practice, only a very few (at most 4 or 5) such

reconstructions need to be calculated; that even this is not computationally over-

demanding follows from the excellent convergence rates discussed above.

An EMS reconstruction in the Weibull case is shown in Fig. 3.5; 9-point smooth-

ing turned out to be suitable here. Fig. 3.5 is based on the same dataset as the EM

reconstruction of Fig. 3.1; the vast improvement brought about by the smoothing is

again impressive. Ten datasets were simulated in this case, too, Fig. 3.5, with

A = 0.1947, is only the seventh best estimate of these, thus demonstrating that a good

correspondence between true and estimated densities is quite typical of our Weibull

reconstructions. Even in the worst cases, the estimate of the density's tail is pleasingly

accurate and the reconstructions always indicate an increase in density near , serious

discrepancies arise only in the estimate of the magnitude of this effect. The EM recon-

struction of Fig. 3.1 took 328 iterations to arrive at; typically, EMS reconstructions -

here with a greater degree of smoothing than in the normal mixture case - took fewer

than 20 iterations each to converge.

3.3 Remarks on Nychka et al. (1984)

The reconstructions of Section 3.2.3 can be compared with those of Figs 7 and 9

of Nychka et al. (1984). The immediate impression is of a broad similarity of the

results of the two approaches; that our reconstructions are certainly no worse than

Nychka et aL's is important, since we believe that the EMS approach of this paper has

several advantages over the cross-validated spline approach of Nychka et al. (1984).
Nychka et al. take a regression approach to what is a density estimation version of the

integral equation problem. This is done by treating the data histogram values as if they

were values of the intensity function f observed with error. Some justification for this

is to appeal to the asymptotic result that the "error terms" will have zero mean, be

jointly normal and weakly correlated; the latter correlation and unequal error variances

were then ignored. The usual penalised least squares approach to such problems could

then be applied With the value of the smoothing parameter involved chosen
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automatically by the well-known method of generalised cross-validation (see Nychka et

al., 1984, for references). The advantages we perceive for our EMS algorithm over

Nychka et al.'s approach are its computational simplicity and speed, its more natural

incorporation of the non-negativity constraint, and the fact that it attacks the Poisson
likelihood directly.

3.4 A Real Data Example

The result of applying the EMS algorithm (with J = 5) to some mouse liver data

considered by Nychka et al. (1984) is given in Fig. 3.6. This reconstruction arises from

a section through the liver of a mouse in which there are a number of malignant

micromours induced by injection of a carcinogen. A total of 154 tumrour cross-

sections were observed; we took e=0.038, Y=0.51 (although the plot stops at 0.4;

beyond this, ^ = 0), T = 64 and S = 50. Fig. 3.6 is directly comparable with Fig. 6 of

Nychka et al. (1984). The outstanding feature of this comparison is, once again, a

remarkable similarity in reconstructions obtained by the two approaches. We have pre-

ferred, perhaps, a little less smoothing of the two; any minor differences can be largely

attributed to this.

This particular mouse liver was, in fact, completely dissected and the histogram

of sphere radii found is also shown on Fig. 6 of Nychka et al. (1984). In one sense,

this forms a true distribution; comparing the reconstruction with the histogram reveals

a generally good agreement, except for discrepancies in the magnitude and slope of the

density near E. However, this comparison is not entirely fair we have been estimating

a (presumed) smooth density of malignant tumours in mouse livers, of which the histo-

gram is itself another (unsmooth) estimate, albeit based on a much larger sample of

directly observed spheres.

4. A SECOND APPLICATION: POSITRON EMISSION TOMOGRAPHY

4.1 The Problem

PET is a medical diagnostic technique that studies the pattern of blood flow and

metabolic activity in an organ by producing an indirectly observed image of a planar

section through the patient's body. Such pictorial representations of internal structure

have considerable appeal as a means of diagnosing certain diseases and in assessing

the effectiveness of treatments. Some of the material of this section is a general

review of the problem, but we shall suggest several technical improvements on exist-

ing methodology in addition to the use of our smoothed EM procedure. One particular

advance is a new discretisation of the "body space" Y which affords considerable com-

putational economies; see Section 4.1.2.
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PET operates as follows. A radioactive tracer - here, a substance (often glu-

cose) emitting positrons - is introduced into the area of interest and the occurrence

of these emissions is recorded by an array of detectors arranged around the body; this

apparatus is a omograph. The amount of radiation given off at any point reflects the

degree of activity present there, so the overall "emission density" provides the required

portrait of internal structure which we estimate. The physics of PET is described by

Vardi et al. (1985) thus: "When a positron is emitted, it 'finds' a nearby electron and

annihilates with it. The annihilation creates two X-ray photons that fly off the point of

annihilation, at the speed of light, in (nearly) opposite directions along a line with a

completely random (i.e. uniformly distributed in space) orientation. There is an array

of discrete detector elements surrounding the [area of interest], and the two photons

are detected in coincidence by a pair of detector elements that define... a tube. fhus

the only information acquired when a pair of detectors count a coincidence is that the

annihilation occurred somewhere inside the tube defined by the two 'firing' detectors".

This is illustrated in Fig. 4.1; see also Fig. 1 of Vardi et al. (1985) or Kaufnan (1987).

Fig. 4.1 is a planar view. It is important, however, to bear in mind the three-

dimensional nature of the' emission process and, consequently, the finite "depth" of the

detectors; the effect of this (not considered by Vardi et al., 1985) is discussed in Sec-

tion 4.1.4. The tube counts comprise the data n. Note that the tube space X differs

from the body space Y.

For more details on physical aspects of PET, see Vardi et al. (1985) and Hoffman

and Phelps (1986). PET is a fairly recent innovation, many aspects of which are still

at the development stage. Research interest in PET covers several disciplines; see

Phelps, Mazziota and Schelbert (1986) for an up-to-date account, including an idea of

the scope of medical application. Other kinds of tomography exist. Transmission

tomography has had more impact: X-ray transmission tomography and related tech-

niques are well-known, but are mathematically quite distinct from PET so the methods

discussed here do not apply. Our methods can be modified for use, however, with

another emission technique called single photon emission tomography (SPECT) which

is little different, as far as mathematical or statistical analysis goes, from PET; see, for

example, Geman and McClure (1985, 1987).

4.1.1 The Detectors

There are a number of detector configurations in current use at PET installations.

We follow Vardi et al. (1985) in considering a single stationary circle of D detectors,

each of equal size and with no gaps between them. Without loss of generality, the cir-

cle has unit radius. This is shown in Fig. 4.1; as there we take D = 128 in all our

illustrations (D is often a power of 2). Practical variations on this set-up include alter-

native detector array shapes, gaps between detectors, two or more such arrays and
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movement of detectors. All T = D(D-1) pairs of detectors form the tubes or data

bins. Although the PET problem is a bivariate (spatial) analogue of the univariate

application of Section 3, it will remain convenient to index tubes by t = 1,...,T in

what follows; we note that for computational purposes, however, the spatial location of

detector tubes is best described by a polar coordinate system.

4.12 Discretising the Disc

The space Y is the disc enclosed by the circle of detectors. We require a discreti-

sation of this disc on which to reconstruct and display emission densities; discretised

functions are piecewise constant taking a single value across each bin or pixel. Many

workers, including Vardi et al. (1985), simply superimpose a square grid of pixels over

Y, but this approach suffers from important computational disadvantages compared

with discretisations that better take into account the geometry of the situation. By

more properly exploiting circular symmetries, it is possible to make substantial savings

in both storage and time requirements. In order best to represent an image by a step

function, all pixels should be, at least approximately, of equal area and shape.

Suppose we allow D1 = 2 k divisions of the detector circle into arcs of equal

length, for some integer k. Then, our proposal is to use the discretisation shown in

Fig. 4.2, constructed as follows. First divide the disc into R = D1/4 equal-width rings

by drawing circles of radius i/R, i=1,2,...,R; for each i, set j=log2i], where [x]

denotes the largest integer strictly less than x, and divide ring i into 2J+3 pixels of

equal size and shape. Thus the pixellation is achieved by doubling segmentations of

the circle at appropriate stages, at the expense of introducing "seams" between the 2'th

and (2J+l)st rings, j=0,l,...,k-3. Except for the innermost ring of all, each pixel is

of the same general shape, while the ratio of maximum to minimum pixel area is

strictly less than 2. For D = 128, the choice D1 = D yields what we regard to be too

coarse a grid. Rather, we employ D1 = 2) pixels in the outermost ring and identify

pairs of adjacent pixels with detectors. In this application, s = 1 ,... ,S refer to these

pixels.

Kearfott (1985) and Kaufman (1987) also recognise the advantages to be gained

by using such a "ring grid". Kearfott's (1985) simple discretisation of the disc results

in the division of the central area into very many long thin pixels, to the obvious detri-

ment of discretised picture quality. Kaufman (1987) presents a discretisation which
overcomes this problem. Kaufman's ring grid is, however, rather less easy to describe

than is ours: "The ith ring is divided into ni sectors so that ni = Ji x ki where ji is a

small integer and ki is a divisor of D," but there appears to be no simple scheme for

choice of these values. Further, Kaufman (1987) uses variable ring widths - although

the widths "vary no more than about 25 percent" - to obtain pixels of equal area; it is
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not clear that this complication is worthwhile when pixels vary correspondingly more

in shape. A full description of Kaufman's pixellation of the disc thus requires specify-

ing values of j, k and width individually for each ring. For D = 128, Kaufman's

(1987) discretisation results in 12,884 pixels, while the comparable grid in Fig. 4.2 has

rather fewer - 10,924; each has R = 64. The value of these circularly symmetric

discretisations for computational purposes is best reflected in the number P of different

possible relationships of pixels to tubes, modulo rotations. For Kaufman's (1987) grid,

P = 200; for ours, P = R = 64 - just one per ring. These numbers compare with

P = 2,080 for a comparable square grid discuised by Kaufman (1987).

4.13 More on the Problem

We have no real data from a PET installation, but rather seek to reconstruct a

relevant mathematical model (or mathematical phantom) of an image using simulated

data. The phantom we use is (essentially) that of Vardi et al. (1985); in Fig. 4.3, we

present a grey-level picture of that phantom, using 64 grey-levels to reflect emission

intensity in the obvious way. This image is designed "as a simplified imitation of the

brain's metabolic activity" with different areas representing the skull, grey matter,

tumours and so on. Note that a property of this picture is that the emission density

consists of areas of constant intensity with fairly large contrast between different areas.

Fig. 4.3 is, of course, a discretised version of the ideal image (Fig. 2 of Vardi er al.,

1985), pixels overlapping area boundaries being regarded as having a weighted average

of values present, in (approximate) proportion to area of pixel covered. Note that we

actually aim to reconstruct this discretised emission density, and denote total emissions

in pixels by I(s), s= 1 .. ,S. Also, differing pixel areas must be taken into account in

the smoothing and plotting; the intensities we plot are is = ,(s)/a(s), where a(s) is

the area of pixel s.

Positron emissions are assumed to occur uniformly at random over homogeneous

regions, but at appropriately differing rates between areas of dissimilar material i.e.

they occur according to a nonhomogeneous spatial Poisson point process with intensity

function the emission density. The unobserved pixel counts are m and k(sj) is the

number of emissions occurring in pixel s which are detected in tube t. Vardi et al.

(1985) state that the Poisson process assumption "seems beyond challenge and requires

no justification" in the PET problem.

The discretised kernel function becomes -the probability that a uniformly orien-

tated line through y in pixel s intersects the two detectors defining the tube r, averaged

over all y in pixel s, for s= 1 ,...,S, r= 1,...,T. The geometrical problem of evaluating

the p's exactly is non-trivial; we propose using a simple approximation. If the prob-

lem were the strictly two-dimensional one suggested by Fig. 4.2, the basic idea is to
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use

{ D- if the centre of pixel s falls in tube t,
p(s) 0 otherwise (4.1)

We thus gloss over small variations in p's due to the planar geometry, but note that
there is an important effect due to the third dimension which we shall discuss in Sec-

tion 4.1.4. The computational advantage of concentrating on the centres of pixels in
our disc discretisation is great. For D = 128 and D, = 256, we need only store the
locations of 8,192 nonzero p's - compared with 27,378 reported for Kaufman's
(1987) setup - and save considerably on computer time by addressing only those
terms corresponding to nonzero p's in the EM update (2.2).

In practice, real PET apparatus involves numerous further important practical
aspects including, for example, time-of-flight considerations (non-coincident arrival at
detectors), attenuation problems ("soaking up" of X-ray photons) and scattering (non-
axial photons); see Vardi et at. (1985), Kearfott (1985) and Hoffman and Phelps
(1986). Some of these effects, such as time-of-flight and scattering, intolve alterations
only to the p(s,t)'s, so our general methodology would carry over unchanged. Non-
linear effects like attenuation, where the p(s,t)'s depend on the unknown image,
would require more substantial modifications.

4.1.4 Accounting for the Third Dimension

Photon lines are emitted in directions distributed uniformly in 3-dimensional
space and the detectors have a finite depth, d, say; this has not yet been taken into
account. Consider a tube of length 1, say, where I is large relative to d, and condition
on the emission being in the direction of that tube. Suppose the annihilation takes
place at a distance 11 from the left hand detector at a height x and write 12 = 1-I (take

x<jd and 11 <12, without loss of generality); see the cross-sectional view of Fig. 4.4. It
is natural to assume that x is uniformly distributed on [0,d]; this reflects an assump-
tion that d is small enough for there to be negligible change in intensity over that dis-
tance. The contribution to p (s,t) due to this third dimension is what we consider here,
namely, the probability that a particular emission yields a photon pair that hits both

detectors.

Suppose that V is the angle that the photon line makes with the plane of the
detectors. Since 1>>d, only small V's can occur, so that V = tan v is approximately
uniformly distributed on its range of admissible values. Evaluating this range is not

difficult. First, if l-1 1d<x,5d, any line hitting the right hand detector automatically
also hits the left hand one; the range of appropriate V's is thus approximately d/12 .

Otherwise, Ox51- 1 11d and the range, which is governed by the angles allowed by the
bottom edges of both detectors, is approximately xil(1112). Averaging over the
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distribution of x yields an average range of Vr which corresponds to the required proba-

bility. A simple calculation shows that, to the degree of approximation used above,

this probability is d /1.

Now, this quantity does not depend on where in the tube the annihilation takes

place, but only on'the length I = I(t) of the tube. Thus, p(s,t) is modified by a fac-

tor, inversely proportional to I(t), depending only on t, and not s. The effect on the

data is clear. a smaller proportion of emissions occurring towards the centre of the disc

vAl be detected than of those happening near the edge, with a consequent degradation

of reconstruction quality to be expected in the (important) central area. That this third

dimension effect remains important while an apparently similar effect in the p!anar

case - imagine Fig. 4.4 as the view looking down on a tube in Fig. 4.2 - does not,

is due to short tubes in the plane also becoming thin tubes (d decreases with 1), but

retaining their depth in the third dimension.

Ti'? real importance of the third dimension lies in the fact that the 3-dimensional

problem does not tend, in the limit as d-+O, to the 2-dimensional one. To see this,

note that any d>O results, after proper normialisation, in an identical set of p(s,t)'s;

these include 1(r), the 2-dimensional ones- do not. Since the real PET problem is 3-

dimensional, our approximating to that case is much preferable to approximating the

planar situation only. Since the change to p(st) depends only on r, the extra compu-

tational burden imposed by taking account of the third dimension is virtually nil.

42 EM Reconstruction

We are now in a position to apply the EM algorithm for ML estimation to the

PET problem, exactly as described in Section 2. Shepp and Vardi (1982) were the

first to do so; Vardi et al. (1985) and Kaufman (1987) follow up this work (see also

Lange and Carson, 1984). The uniform initialisation / early termination version of EM

which is actually employed is widely regarded as being among the best PET recon-

struction procedures currently available; see, for example, Shepp et al. (1984), Mintun

et al. (1985) and Vardi et al. (1985), the last named outlining several competing

reconstruction methods. Most commercial PET installations persist in using other

techniques (especially "convolution back projection ", see Shepp and Kruskal, 1978)

because of the computational advantage such approaches afford (Kaufman, 1987).

A dataset arising from the phantom of Fig. 4.3 was simulated; all reconstruction

attempts to be portrayed in succeeding figures are based on these data. In line with

many other studies, a total" number of emissions, N, of 106 was chosen (this is, how-

ever, rather fewer than the number employed by Vardi et al., 1985, and Kaufman,

1987). Data simulation was again performed by mimicking the physical process:

obtain points from the Poisson process with the intensity displayed in Fig. 4.3 by the
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obvious acceptance/rejection method, obtain randomly oriented lines through these

points by choosing uniformly distributed angles and finally perform a further

acceptance /rejection step with acceptance probabilities inversely proportional to the

lengths of these lines to take the third dimension into account.

A reconstruction of the phantom obtained by allowing the EM algorithm to run

for some considerable time - here, 200 iterations - is shown in Fig. 4.5. The result

is typical of the unacceptability of "ML reconstructions" in this context. The image

obtained is itself very noisy: putative flat areas are estimated to be extremely rough.

As well as the lack of aesthetic appeal, the effect of this is that only the very strongest

features - here, the large circle and ellipse, both with very different intensity from the

background - survive for inspection; this is clearly unsatisfactory. The speckled

nature of Fig. 4.5 reflects the roughness of the reconstructed surface in plan view;

neighbouring pixels are estimated to have widely differing intensities. It is important

to note that the EM algorithm has not yet converged and the roughness described here

get worse if we allow the altm ifther. This is beus_M Is tr ng

suggest a "spiky" solution to the problem, much as in Figs 3.1 and 3.2 for the univari-

ate analogue, this effect being mitigated here by the smoothing due to the discretisa-

tion of the disc. The same grey scaling is used on all reconstructions. The great varia-

bility in Fig. 4.5 implies that in the darker areas, some estimated pixel intensities lie

above the highest grey level and have been redefined to be black; some of the speck-

led nature of the picture, especially on the largest circle, has thus been concealed.

Of course, in practice, application of the EM algorithm is not allowed to reach a

state like that of Fig. 4.5. Rather, the iterations are terminated early: Fig. 4.6 displays

the reconstruction obtained by stopping after just 24 EM iterations. Calling this

(erroneously) "the ML reconstruction" accounts for the good performance attributed to

the method: in Fig. 4.6, large "objects" are well reconstructed and roughness, com-

pared with Fig. 4.5, is considerably reduced. (Small scale features present in the phan-

tom are hinted at, if not reproduced convincingly.) Veklerov and Llacer (1987) propose

a data-dependent rule for selecting the. point at which early termination of the EM

algorithm should occur. The use of a constant initial configuration is important here;

it is a smoothing influence which persists through the early stages of the EM algo-

rithm. Roughly speaking, early iterations quickly make manifest approximate shapes

and intensities of objects, while the later iterations are responsible for roughening the

image. The uniform starting point is the ultimate in smooth images in the sense

appropriate to PET. So, rather than the common approach of smoothing a rough

image towards such a smooth one, the EM iterations are used to "roughen" away from

the ultrasmooth.

Different choices of initial estimate result in different EM reconstructions; a vivid

illustration of how properties of initial reconstruction can persist to appear in iterated
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reconstructions is given in Fig. 5 of Kaufman (1987). Extensive recent work on
accelerating convergence of the EM algorithm (Lewitt and Muehlelhner, 1986, Kauf-

man, 1987, Lange, Balm and Little, 1987) seems gratuitous since, as we have argued,

the ML optimisation is inappropriate to the problem at hand.

All our reconstructions incorporate the third dimension effect described in Section

4.1.4. These turn out to be slightly smoother than comparable reconstructions of the
purely two-dimensional version; the length bias has the effect of making the problem
less ill-posed. As anticipated in Section 4.1.4, there is a slight deterioration in quality

of reconstruction towards the centre of the image; perhaps it would be more realistic to

suppose the area of interest filled a smaller portion of the tomograph disc, whence
such an effect might become more important. Note also that wt, might expect the
incorporation of more physical considerations into the p(s,t)'s to result in less smooth

reconstructions than here, since most would have a smoothing effect on the kernel and
a consequent worsening of the ill-posed nature of the problem.

43 Smoothed EM Reconstructdon

4.3.1 Local Smoothing

We utilise perhaps the most natural (and common) approach to smoothing values

on a spatial grid: replace the value at each pixel by some function of that value and
those of its nearest neighbours. Examples of useful smoothing functions follow in

Section 4.3.2. A little care needs to be taken over the definition of neighbours in our
circular discretisation scheme. For a rectangular discretisation, Besag (1986, p.2 62),
for example, identifies nearest neighbours of a pixel in a natural way: first-order neigh-

bours are those pixels adjacent vertically and laterally to the one of interest, while a
second-order neighbourhood additionally includes diagonal adjacencies. The effect of

a finite window is to modify these definitions (in an obvious way) for boundary and
corner pixels. It is not difficult to translate these notions to the circular grid although,

because of the seaming, we need deal with 8 (rather than 3) different pixel types. First
and second order neighbours of pixels of each type are identified in Fig. 4.7 (using

D, = 64 for clarity). These definitions retain the desirable property of symmetry of

neighbour pairs: if s1 is a neighbour of s2 , s2 is a neighbour of s1 . Following Besag

(1986), we view the second order scheme as the most useful one (and use it
throughout). A further argument here for going beyond first-ordei neighbourhoods is
that alternate pixels on the outside of a seam have different types of adjacency on the
inner edge; this leads to an undesirable "castellation" effect on reconstructions using

first-order neighbours only.
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Unlike the basic EM algorithm, boundary and seam effects mean that EMS algo-

rithms do not automatically scale so that A")(s) = N, all i2l. Operationally, we
S

rescale smoothed images to have this property; although this has no effect on succes-

sive reconstructions, it is useful in making successive values of the (log) likelihood

comparable.

43.2 Smoothed Reconstructions

In this section, we present some examples of applying versions of the smoothed

EM algorithm to reconstructing the phantom of Fig. 4.3. Because the phantom, as

well as images likely to occur in practice, is not everywhere smooth but contains

discontinuities, we have experimented with both simple linear smoothers and with

local non-linear ones. Smoothers that purport to preserve edges are necessarily non-

linear in the values at the pixel of interest and its neighbours; Scher et al. (1980) and

Chin and Yeh (1983) describe a number of methods that have been proposed in the

literature for use in cleaning up noisy images containing discontinuities. However, the

performance of non-linear smoothers within EMS has beer' disappointing. We report

reconstructions based on just two of these smoothing schemes out of the several we

have tried. In Fig. 4.8, we exhibit the result of using the EMS algorithm with local

median smoother i.e. replacing a pixel value by the median of it and its neighbours'

values. In Fig. 4.9, a slightly more sophisticated non-linear smoother - the best we

have used in this context - was deployed. This is the mean of the central pixel value

and of the two neighbouring values closest to the central one; in this way, we try to

average only over pixels on "the right side" of an edge (this is a special case of KAVE

of Chin and Yeh, 1983). Neither of these, nor any others that we have investigated,

yields a good reconstruction. As well as eradication of the smaller features of the

phantom, significant distortions are introduced as artefacts of the methods used. Both

Figs 4.8 and 4.9 are pictures produced after 200 EMS iterations. It is important to

note that neither of these uon-linear methods converged.

Returning to linear local smoothers - and thus relaxing our concern for trying to

avoid blurring feature edges - we get better results. A simple scheme, which works

well, is this: take a weighted average of the form weight 1 for the central value and

equal weights W- 1, say, for each neighbouring value, normalised appropriately (other

linear smoothing possibilities are in Russ and Russ, 1984). This is closely related to

the way we smoothed in the stereology context. It turns out that we need only a small

amount of smoothing (W large) for good effect. Reconstructions for the ongoing

example are given using W= 200, 50 and 10 in Figs 4.10, 4.11 and 4.12, respectively.

The first of these reflects the effect of (slightly) undersmoothing: background rough-

ness remains too high, although objects are fairly clearly visible. The last is a little



- 21 -

oversmoothed: better background but loss of resolution in object reconstruction. The

choice W= 50 in Fig. 4.11 seems to be about as good a compromise as can be

obtained by this method. We have not considered automatic choice of smoothing

parameter, but are encouraged by the fact that "best" choosing W might not be critical:

reconstructions (not shown) using W between say 100 and 25 are not substantially dif-

ferent from that of Fig. 4.11. Note that in virtually all of our reconstructions a minor

effect due to the seam in our discretisation with radius one half that of the disc is

faintly visible. In particular, this artefact has had a slightly detrimental effect on the

quality of reconstruction of the pair of small ellipses towards the bottom of the phan-

tom which lie near to this seam.

Quantifying reconstruction quality in image analysis is not easy. We briefly report

L1 discrepancies between phantom and reconstructions; this quantity is

S
B i a(s) IA(s)- A(s)I

$='

where A and A are grey scale values corresponding to A and ;L respectively. Now,

B = 6.191 for our W =50 reconstruction, although smaller values of B are achieved for

smoother pictures: B =5.728 for W = 25 is the best achieved. Our visual preferences

are better reflected in other L, values, though: Fig. 4.5 yields the very large value

B =20.844, Fig. 4.9 is just preferable (B =9.825) to Fig. 4.8 (B= 10.222) and is

much preferable to other non-linear EMS solutions, and the reconstruction of Fig. 4.6

after 24 EM iterations is quite good with B = 6.9 10 (this is comparable with EMS

reconstructions with W between 75 and 100). It is noticeable that B displays a prefer-

ence for oversmoothed images but is otherwise satisfactory. In any ca.e, it is widely

recognised that this type of measure does not really give a good reflection of the

human observer's sense of image fidelity especially when, as here, the true image con-

tains features with distinct edges. Indeed, the provision of image metrics that properly

reflect visual perception remains a difficult question: see Baddeley (1987), for exam-

ple.

Finally, the EMS algorithm using local linear smoothing has always converged in

a reasonable number of iterations. Indeed, using a convergence criterion essentially

corresponding to that in Section 3.2.3, the numbers of iterations required for conver-

gence of EMS with W= 200, 50 and 10 were 62, 43 and 32, respectively. Moreover,

simulation experience suggests that the local linear EMS reconstruction is unique.

4.3.3 Other Smoothed EM Methods in Emission Tomography

To the best of our knowledge, this is the first time our simple EMS algorithm has

been proposed. There are, however, some other suggestions for incorporating smooth-

ing into the EM algorithm in PET and/or SPECT in the recent literature. We have
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already mentioned a penalised likelihood approach - an EM, algorithm - in Section

2. In the PET context, the M. step is essentially the same problem as that arising in

image processing problems which are approached by maximum a posteriori estimation

(see Geman and Geman, 1984, and Besag, 1986). Even when an appropriate penalty

function or prior distribution has been decided upon - locally dependent Markov ran-

dom fields form a class of priors capable of quantifying notions of local smoothness

(Besag, 1986) - the computational problem of locating the global maximum of the

penalized likelihood is immense and not yet satisfactorily solved (Greig et al., 1986).

Obtaining a local maximum at the Mp stage is more reasonable. A successful method

for finding a "good" local maximum in image processing is Besag's (1986) iterated

conditional modes (ICM) algorithm. Roughly speaking, ICM is not all that different

from our simple local smoothing: it performs a few iterations of a sequential local

smooth (i.e. "current" pixel values include those already updated, not just the originals)

using a local smoother based on maximising a penalized marginal likelihood. We

would not be surprised to find that the lCM approach yields good reconstructions; we

wonder, though, if even its level of sophistication will ultimately prove to be

worthwhile. Indeed, Geman and MzClure (1985, 1987), considering the application of

such methods in the context of SPECT, decided to fall short of a full implementation

of such an MP algorithm. Rather, they obtained a reconstruction by some other method

to act as initial estimate and then applied a single M. step of the above sort. Perhaps a

better perspective on Geman and McClure's approach is as the application of popular

image processing techniques to cleaning up reconstructions obtained in other ways.

Note too that Geman and McClure (1987) consider posterior mean reconstructions

(their penalised likelihoods are posterior distributions) as alternatives to posterior

modes. Less appealing to the current authors are other EM, approaches utilising

pixel-by-pixel priors designed to encourage smoothing towards prespecified, or

estimated, images. Examples are given by Hart and Liang (1987), Lange et al. (1987)

and Levitan and Herman (1987). Other regularisation procedures, based, we believe,

on inappropriate roughness penalty functions, are considered by Girard (1987) and

Miller and Snyder (1987).

A rather different approach to smoothed EM algorithms for PET is taken by

Snyder and Miller (1985) (also Miller, Snyder and Moore, 1986, and Snyder er al.,

1987). These authors force their emission density estimate to have kernel convolution

form i.e.

A(s) f8(s,z)0(z)dz s=l,...,S,

for 8 a known kernel, and 0 is estimated by ML - this is a kernel convolution sieve

(Geman and Hwang, 1982). This is identical with replacing the point-spread function

by a kernel-smoothed version of it,
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Pe(st) =Y,(s,r)p(r,t),
r

say, and proceeding by the EM algorithm. As a last step, this ML solution is smoothed

once by application of 6. This approach, while certainly yielding smooth images,

requires the (spik.) ML solution to what is an even more ill-posed problem (caused by

the smoothing effect of 6) and so it retains and perhaps even exacerbates all the

numerical convergence problems of obtaining true ML reconstructions by the EM

method.

4.3.4 Closing Remarks on the PET Application

A first striking feature of the reconstructions shown in this paper is the similarity

between that obtained by the uniform start / early termination modification of basic

EM, in Fig. 4.6, and the "best" weighted local mean EMS reconstruction shown in Fig.

4.11. We have certainly shown that nothing need be lost in terms of reconstruction

qualjt by the introduction of our exli5procedure and would aie that

the latter image is indeed a slight improvement over the former. Moreover, the EMS

formulation offers prospects of further improvement: other local smoothing schemes

can be fitted into the same framework and might work better, while the benefits of the

provision of an apparently uniquely convergent algorithm include scope for further

computational improvement such as accelerating that convergence.

5. SOME THEORETICAL BACKGROUND

The clear empirical success of the EMS algorithm immediately asks several

theoretical questions. It has been observed in practice that the EMS algorithm employ-

ing linear smoothers converges relatively quickly and that its limit point is apparently

unique. Obviously it would be of interest to prove these properties rigorously. Unfor-

tunately, we have not been able to do so, but in this section we provide a heuristic dis-

cussion that relates the EMS procedure to an EM, approach where the likelihood is

penalised by a term that is quadratic in the vector of square roots of the intensities.

This relationship gives some insight into the good proptrties of EMS and it is our

hope that it will be a useful starting point for future theoretical work.

5.1 A Lemma

The first step in our development is a simple algebraic lemma.

Lemma. Suppose that W is a diagonal matrix of weights and that S is a matrix for

which S"i - 0 for all r and s and S" = 1 for all r. Suppose that for some 3> 0
W

I w~w- ii
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for all (r,s) such that $,, * 0; here, the w's are the diagonal elements of W. Define a

matrix T by T = W-1 SW. Then for any vector x

[(TX - Sx), 1 : Ssup IX. (5.1)
U

Proof. I(Tx-sx),I = lS,,(w w,-1)xl < suplx, l;S,,=Ssup Ix, I. C

The implication of the lemma in the current context is as follows. Suppose that x is
indexed by our reconstruction bins and that S is a local smoothing operator so that
Srs = 0 unless r and s are neighbouring bins. Suppose that W is an array of weights
that vary continuously over the space Y, that is, w,. = w, whenever r and s are neigh-

bours; then 3 can be chosen to be small. The operator T corresponds to weighting an
intensity by the w weights, smoothing by the operator S and then unweighting. The
lemma therefore quantifies the intuitive notion that S and T will have approximately

equal effects.

52. A Relationship Between Local Smoothing and Maximum Penalised Likelihood for

Poisson Random Variables

Write p for the vector of f,'s where 4p, =,.A(s)la(s) as in Section 4.1.3 and

define z, = 4q, for all s with z = (z ,..., xs). Also write 'I as the diagonal matrix
with diagonal elements V, = q(s)a(s). Let S be a smoothing matrix all of whose

eigenvalues lie in (0, 1] and define R = '0(S " 1 -I)Ti. Suppose that observations rn(s)
of independent Poisson(i$V,) random variables are available and let IP(x) be the log
likelihood penalised by xJRx i.e.

lp(X) = ym(s) log(X2V') - Zr2y., - xz'Rx.
$ $

To see that xlRx has the effect of being a roughness penalty, note that the eigen-
vectors corresponding to large eigenvalues of R will be those corresponding to small

eigenvalues of S, and so will consist, loosely speaking, of high frequency oscillations.
The following theorem demonstrates a connection between the penalised ML estimate
of x, and the estimate obtained by direct smoothing of the ML estimate of p and by

taking square roots.

Defime h to be the maximiser of lp(x) in {zr>0}. Set W= ITF, where
rl=diag(^). The ML estimate of p is T- Im. Define T = W- SW as in Section 5.1
and let 17= (?j , ... , Jrs) where f, = (TI- 1 m)I for each s.

Theorem. With the above definitions, Y? = R.

Proof. Write



-25-

IP(s) = -T(P + R)x + 2 Ym(s)logx, + Tm(s)log P,.
$ S

Hence the Hessian matrix of 1. is -2(I' + R + diag(m(s)/4)2}), which is strictly nega-
tive definite in (z, > 0), and so 9 will be uniquely defined by Vlp(2) = 0. This is true

if and only if

[(T + R) it, = m(s) k 1 for each s.

It is easy to see that 'Y+R=P 1 S-Y and that, if $ is the vector of 42's,

= iW'YW. Therefore, the vector with components 9,, ((IF + R) ), is equal to

(IFP + R)je = (W-lPI) ('PiS-l 1) l-iW; = TW- 's-'wA = T1-I

Thus, m= PlT so that T- I m and therefore , = a 1 m) I =vs for all s. 03

Of course, the smoothing matrix T depends, through the weights w,, on R and so
the expression of $ as a smoothed version of .'PIm is.not immediately of practical
use. However, a heuristic argument based on the lemma relates the smoothed ML esti-
mate V" =SW-m to ip as follows. Since the penalty xTRr can be expected to penal-
ise for roughness in x, the penalised ML estimates ( ^) will vary continuously. Pro-
vided the ys's also vary continuously, so will the weights (w,) and hence, by the
lemma, the effects of smoothing by the operators S and T will be almost identical
Thus * = SY-1lm = TT- 1m = ,. Note that in the PET context, the Vs's do not vary
continuously across the seams in our discretisation of Y but this does not appear in
practice to have an important effect. In the stereology example, there is no such
discontinuity.

53 Smoothed EM and Penalised EM

Return now to the EM algorithm and consider the construction of an EM, algo-
rithm to maximise l(n 12) penalised by a term xTRx as above. Recall that, at each
iteration, in the notation of Section 2, A (s) =t(s,z). If the M, step is then approxi-

mated by finding the smoothed ML estimate A*(s)=p,*a(s), where T*-Ifi,
then the effect is precisely an iteration of the EMS algorithm using the smoothing
operator S. Thus, each.EMS iteration corresponds approximately to an iteration of the
EM.-algorithm with the penalty on the square roots of the intensities; this is the point

we aimed to make.

This heuristic equivalence may account for the rapid conv.ergence of the EMS
algorithm; see the remarks of Dempster et al. (1977) about the EMP algorithm. We
have been unable to prove that the penalised likelihood has a unique maximum but our
empirical experience suggests that this is so. Certainly it will be the case in general
that at any maximum of the penalised likelihood the Hessian matrix is positive definite
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so the maximum will be strict.

6. SUGGESTIONS FOR FURTHER WORK

We have introduced a simple algorithm that is widely applicable to a large class
of problems involving indirect observations. Clearly, there is much scope to supple-
ment our fruitful empirical studies by further theoretical and practical work. In particu-
lar, the work of Section 5 might be carried further. Once this is done, it would then
be of interest to study the theoretical properties of the EMS solution, both for their
own sake and in order, hopefully, to give insight into the choice of smoothing parame-
ter. Alternative smoothing schemes are also of interest.

The whole area of statistical methods for indirect data is not enormously well
understood. One interesting question is that of quantifying the information loss
inherent in the indirectness of the data. Johnstone and Silverman (1988) have made
progress for the PET problem towards finding an equivalent "direct sample size", i.e.
the number of emissions whose exact position would have to be observed to give the
same accuracy of estimation as the given sample of indirect observations.
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FIGURE LEGENDS

Fig. 3.1. An EM reconstruction (- ) of the truncated Weibull density --

Fig. 3.2. An EM reconstruction (-) of the truncated normal mixture density

Fig. 3.3. An EMS reconstruction using J- 5 (- ) of the truncated normal mix-
ture density (- -). The reconstruction is based on the same data as Fig. 3.2.

Fig. 3.4. Another EMS reconstruction using J = 5 (-) of the truncated normal
mixture density (- -). The reconstruction is based on a different dataset.

Fig. 3.5. An EMS reconstruction using J = 9 (-) of the truncated Weibull den-
sity ( - -). The reconstruction is based on the same data as Fig. 3.1.

Fig. 3.6. The EMS reconstruction using J = 5 (-) of the sphere radius intensity

for the mouse liver data.

Fig. 4.1. A planar section through an elliptical "body" within a circular detector
set; edges of individual detectors axe marked. An emission, at *, yields a randomly
orientated line in 3-space. Two such possible lines are shown.

Fig. 4.2. Our discretisation of the disc.

Fig. 4.3. The phantom.

Fig. 4.4. A cross-section through a tube showing the distances defined in the text.
The annihilation spot is marked *.

Fig. 4.5. Reconstruction after 200 EM iterations.

Fig. 4.6. Reconstruction after 24 EM iterations.

Fig. 4.7. Neighbours in the circular discretisation scheme: 0 = pixel of interest,
= first order neighbour, x = second order neighbour. There are eight different pixel

types in all; two of these are illustrated on separate insets.

Fig. 4.8. EMS reconstruction using local median smoother.

Fig. 4.9. EMS reconstruction using 2AVE smoother.

Fig. 41.10. EMS reconstruction using weighted local mean smoother with W = 200.

Fig. 4.11. EMS reconstruction using weighted local mean smoother with W = 50.

Fig. 4.12. EMS reconstruction using weighted local mean smoother with W= 10.
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An Orthogonal Series Density Estimation Approach to

Reconstructing Positron Emission Tomography Images

M.C. JONES & B.W. SILVERMAN, University of Bath

SUMMARY Positron emission tomography (PET) is an important medical imaging

technique. Statistically, the PET image reconstruction problem comprises estimating

the intensity function of a nonhomogeneous Poisson process from a set of indirectly

observed data (an integral transform is involved). In this paper, we investigate a new
reconstruction method consisting in the adaptation of orthogonal series density estima-
tion techniques to use with an idealised form of the PET problem. The method pro-
vides reasonable reconstructions quickly; its computational speed is its major advan-

tage. It has further advantages (e.g. no pixellation required) and various disadvan-
tages (e.g. difficulties with object boundaries, non-negativity not guaranteed) which

are discussed. Its major disadvantage, however, is the difficulty associated with gen-

eralising the approach to cope with more realistic versions of the PET model.

1 Introduction

It is often desired to infer something about the internal structure of an object when to
look at that structure directly is impossible. Instead, we may be able to obtain meas-

urements external to the object which are, in some way, derived from the internal
structure of interest and from which we might hope to be able to estimate that struc-

ture. This scenario occurs frequently in medicine. Suppose, for concreteness, interest
centres on a patient's brain and, especially, in the metabolic activity in a particular

slice through the brain. An idealised image illustrating the kind of pattern of activity

we might expect to obtain is shown in Fig. 1. Here, grey levels are used to represent
different levels of activity. How do we get at such a useful portrait of unobservable

features?

The particular technique for this kind of investigation with which we are con-
cerned in this paper is positron emission tomography (PET). In PET, radioactive

material is introduced into the area of interest - often tagged glucose in the brain -

with the idea that it distributes itself around in direct proportion to the property (meta-

bolic activity) of interest. The radioactive tracer emits positrons, each of which in turn

creates (in conjunction with a nearby electron) a pair of X-ray photons which fly off in

opposite directions and which can be detected externally; the point of photon genera-
tion corresponding to a typical emission is marked on Fig. I by a circle, together with
two lines through the point representing two potential photon paths which in fact occur
at a uniformly distributed random angle. An array of detectors positioned around the
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patient - in Fig. 1, they form a division of the outer circle into D = 128 arcs of equal

length - registers coincident photon arrivals. Thus, our data are the counts amassed in

the T= D(D-1)/2=8128 "tubes" defined by all pairs of detectors. In typical PET

applications, the total emission count numbers from several hundreds of thousands

upwards. The present and potential usefulness of PET and other medical tomographic

techniques is considerable. Research interests in the many stages that make up a com-

plete PET system cover a wide variety of disciplines. There is a number of important

statistical questions concerned with PET of which just the most obvious one of best

reconstructing the internal image from the external observations is considered here. For

a general introduction to PET, see Phelps, Mazziota & Schelbert (1986); for more dis-

cussion of the idealised PET setup in which we work here, see Section 2.

PET therefore provides a challenging image analysis problem which differs from

many image analysis problems in two important ways. The first of these lies in the

indirect nature of the image observation process described above. Many other prob-

lems, such as those discussed in Besag (1986) for example, concern noisy direct obser-
vation, in the sense that what is observed in each pixel depends only on the true

scene's value in that pixel, and not elsewhere, together with some modifying noise

process. Here, emissions from completely different areas of the brain contribute to the

same data values since all that each datum registration means is that an emission

occurred somewhere in the given tube. In fact, observation intensity and image inten-

sity functions are related by an integral transform given in Section 2. The second

difference between PET and many other superficially similar problems is that the
image of interest is the intensity function of a nonhomogeneous Poisson process -
emissions occur uniformly throughout areas of constant activity in Fig. 1 but with rates

differing between areas in direct proportion to the respective activity levels - and
direct data, if available, would be a realisation of that Poisson process; this contrasts

with data which are values of some true regression-type function observed with error.

There are several popular techniques for nonparametric estimation of an intensity

function, or equivalently of a probability density function, available in the literature

(see Silverman, 1986) for the case of directly observed data. Here, we investigate the

application of one of these - orthogonal series intensity estimation - to the PET

problem concerning indirect observations. It turns out that the orthogonal series
approach extends easily and naturally to the indirect case, at least for one particular

idealisation of the PET reconstruction problem; details are given in Section 3.

The current work provides a practically oriented companion paper to the theoreti-
cal investigation of Johnstone & Silverman (1988). Johnstone & Silverman were con-
cerned with quantifying the ill-posedness of the PET problem. In particular, they cal-

culated theoretically the order of magnitude of the size of a sample of directly

observed positron emissions that would be required to be equivalent to a given sample
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size of the indirectly observed data which is available in practice, in the sense of yield-

ing equally accurate image reconstructions. They conclude that their "results confirm

intuition that for the PET problem, the amount of information available is still substan-

tial, but it is by no means as great as if a sample of... direct observations were avail-

able". Johnstone & Silverman introduce the orthogonal series intensity estimation

method as a purely theoretical device to aid their investigation. They mention that it

"might be used as the basis for practical reconstructions". Here, we follow up this

suggestion.

Various properties of the orthogonal series intensity estimation approach to PET

image reconstruction are investigated in later sections of the paper. In Section 5, the

method is applied to a simulated example. It is possible to understand how the orthog-

onal series smoothing works by displaying pictures of the "equivalent weight function"

which a weight function estimate based on direct observations would need to employ

to obtain the same answers; this is done in Section 6. In Section 7, a proposal for the

automatic choice of the smoothing parameter associated with this method is made.

Broadly speaking, techniques for image reconstruction in PET fall into .two

categories. On the one hand, the best quality estimates thus far available derive from

iterative algorithms which are costly in terms of computer time. One such class of

methods is based on the EM algorithm, as developed by Vardi, Shepp & Kaufrian

(1985), for which much recent interest has centred on incorporating some kind of

smoothing - see Silverman er al. (1988) for our own contribution to this area and

further references. On the other .hand, practical PET implementations tend to use dif-

ferent algorithms which are much quicker to compute but sacrifice something in terms

of image accuracy. A favourite example of this type is the "convolution backprojec-

tion" method described in, for example, Shepp & Kruskal (1978). We see the orthogo-

nal series intensity estimation approach as fitting more into the latter category although

the quality of the resulting reconstructions remains fairly good. A major disadvantage

of the proposed method, however, is the difficulty associated with generalising the

approach to cope with more realistic versions of the PET problem. Further discussion

of the pros and cons of the orthogonal series approach is given in the closing Section

9.

2 More on PET

The idealised PET setup that we have briefly described in Section 1 is the one dis-

cussed by Vardi et al. (1985) in a paper that provides an excellent introduction to the

topic for the statistician. In practice, there are a number of potentially important factors

- such as time-of-flight considerations, attenuation problems, scattering and so on -

which are ignored in this model; they serve to modify the integral transform linking
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points of emission and the data at hand and should, if possible, be incorporated in

practical situations. An effect due to the nonzero thickness of the detectors, first

included in the model by Silverman et al. (1988), is also omitted in this paper, but see

Section 8.

Our notation follows that of Johnstone & Silverman (1988, Section 2.2) and is

' riefly reviewed here. We first consider an entirely continuous version of the PET

model: as well as the naturally continuous "brain space" (the unit disc), parametrised

by the usual polar coordinates (r,9), 0 r< 1, 0 S < 2x, suppose the "detector space"

consists not of the T tubes of reality, but is the space of all possible unordered pairs of

points on the unit circle. Parametrise detector space in a polar fashion too: elements of

this space are given by (s,p), 0 < s< 1, 0 < o< 2c where s is the length of the perpen-

dicular from the origin to the detected line and q is the orientation of that perpendicu-

lar (see Fig. 2.2 of Johnstone & Silverman, 1988). It is convenient to renormalise the

emission intensity to be a probability density function f(r,0), say, with respect to nor-

malised Lebesgue measure u, where 4(r,)=z- t rdrdO. Write g(s,4p) =(Pf)(s,q)
for the probability density in detector space with respect to the transformed measure A

given by d2(s,o))=2x-2(l-s 2 )1dsdp. The mapping P is the well-known Radon

transform of the density f given by

(Pf)(s, P) = i(-s 2 )-  f f(scostp-tsinp,ssinp+tcosip)dt. (1)
-1-,')

As is intuitively clear, the Radon transform represents the average value of f over the

line connecting the pair of points on the circle. See Johnstone & Silverman (1988) for

more details of the above and Deans (1983) for a good introduction to the Radon

transform in general.

In reconstructing PET images in this paper, we maintain the continuous nature of

brain space but are forced to discretise detector space. The former continuity contrasts

with many other reconstruction methods (including those of Vardi et al., 1985, and

Silverman et al., 1988) which work with a discrete pixellation of the disc. The latter

discretisation of detector space is an irremovable constraint due to the physical setup.

We denote the corresponding discrete tubecounts by nt , t = 1, ... , T where the order of

indexing tubes by t is immaterial.

3 Appropriate Orthogonal Series Estimation

We wish to estimate the emission intensity f. If direct observations drawn from f were

available, the usual orthogonal series estimation paradigm is as follows. Firstly, expand

f in terms of orthonormal functions [r, ) i.e. write

f(r,0) = ,f, 7,(r,0).
V
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Secondly, estimate the coefficients fr) by the average of 17, over the sample of

(r,0)'s; call these {f}. Finally, introduce some smoothing either by a collection of

tapering weights or, as here, by cutting off the potentially infinite sum after some finite

number, K, of terms. Our estimate is then

A(r,G) = 0). (2)

See Section 2.7 of Silverman (1986) for an account of this approach to density estima-

tion and Section 7 of Izenman (1988) for mor references. Since our f is a bivariate

funciion, v represents a double subscript.

We can equally well expand g as

g(s, ,) = n,(s, )
V

for appropriate functions ( iv,) and use a similar procedure to estimate g. Note that the

,,'s are practically calculable from our indirect data. Now, provided that the orthonor-

mal sets {?I} and ( jv} are such that there exists a set {b,) of positive real numbers

with

(P77,) (s,,p) = b, ,(s,,p), (3)

we can write g, - bf, so that

f(r,O) "- g 7,(r,
V

The natural orthogonal series estimate of f based on indirect observations is therefore

f(r,O) ,- bg, .i7(r,0). (4)
vSK

The fact' that a set of quantities with the above properties - a singular value

decomposition - exists for the Radon transform (see Deans, 1983, Section 7.6) is

what makes the orthogonal series intensity estimation approach applicable to our ideal-

ised PET model. In brain space, the appropriate orthonormal functions are

rlv(r,B) = (m+I)i Z(r) eu . (5)

We have written v as (l,m): m = 0, 1,2, ... is what becomes truncated at K, while I

varies from -m to m in steps of 2. The functions Zt,(r) are the Zernike polynomialv of

degree m and order I which have a history of application in optics (Born & Wolf,

1980). See Deans (1983, Section 7.6) for their properties. In detector space, we take

;(s, p) = U,,(s) (6)

where Un(s) is a Chebyshev polynomial of the second kind (see Deans, 1983, Appen-

dix C). The singular values (by) are given very simply by
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b, = (m+l) . (7)

Of course, the orthonormal functions in (5) and (6) are real-valued. li each, the quan-

tity of the form eia(* ) is simply a useful shorthand for coping with sine and cosiae

terms; in appropriate combination, all imaginary terms disappear. More details on the

above development can be found in Sections 5 and 6 of Johnstone & Silverman

(1988).

The discrete nature of the mbecount data affects the estimates (IV} of [g).

Suppose the line parallel to the sides of tube t but located at its centre has coordinates

(s,O). Then we use the natural sample average of yv, based on the grouped data,

namely

t -
=N-I n, (8)

t= I

the bar denoting complex conjugation. Here, N = nt is the total number of emis-

sions. Plugging (7), (8) and the definitions (5) and (6) into (4) yields a complete

description of f (for fixed K). Recursions involved in calculating both types of orthog-

onal polynomial help to keep the computational burden down.

4 Presentation of Figures

Figs 2 to 8 are all grey level images of PET image reconstructions and related quanti-

ties. Each uses 32 grey levels scaled in a rather arbitrary way, increases in darkness

representing increases in (estimates of) metabolic activity. Orthogonal series intensity

estimation results in (high order) polynomial surfaces defined at all points of the disc.

Representing such smooth functions is a task well suited to the application of a high

quality contouring package; in our figures, we have used the excellent CONICON3

programs of Sibson (1987). The grey level images result from suppressing drawing of

the contours themselves and filling in the areas between successive contours with

appropriate shades of grey. CONICON3 requires value and gradient information on the

function to be contoured only at a regular grid of values - a 20 x 20 square grid usu-

ally sufficed here. Computation and presentation of the images given in this paper

were performed on a SUN 3/160 workstation, copies of the pictures being produced by

an Apple LaserWriter II printer.

5 A Simulated Example

We illustrate use of the orthogonal series intensity estimation algorithm on data simu-

lated from the image - the "phantom" - shown in Fig. 1. This phantom is a piece-

wise constant function made up of elliptical areas of constant intensity (representing

ventricles, tumours and so on) on a large background ellipse (the head). The key
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property of this idealisation which, we believe, transfers to real images is the presence
of edges of features at which there may be a considerable jump in intensity; ideally,
we would like to estimate such edges well. The constancy property (within objects)
may prove less realistic than some kind of smooth variation, but this is less of an
issue. This phantom is essentially the same as that of Fig. 2 of Vardi et at. (1985) and
w= alsc used in Silvcran er al. (1938). Fig. ! hAds son.thing of a discretised look
about it, having been obtained by using CONICON3 on a fine 100 x 100 grid- this
comes about ,ince we are applying CONICON3 to an entirely inappropriate piecewise
constant function! Nonetheless, Fig. 1 bears comparison with the discretised version of
the phantom given as Fig. 4.3 of Silverman et al. (1988), giving a good impression of

the features present in the image and serving as a kind of bound on how well the true
phantom could be reconstructed using the representation tools at hand. A total of
N= 106 emissions - commensurate with real applications - was generated from this
intensity function using the acceptance /rejection method in the obvious way. The
corresporiding tubecounts form the data for this experiment.

Figs 2 to 4 are three reconstructions obtained from these data; they correspond to
K = 10, 36 and 50, respectively. The first (Fig. 2) is clearly oversmooth. It is
encouraging that even here large features present in the phantom are reproduced to
some extent but the total disappearance of the smaller objects gives cause for concern.
Figs 3 and 4 are progressively less smooth. By the time K =50 (Fig. 4) it can be
argued, given knowledge of the true image, that even the smaller features are indicated
fairly well but, of course, that (practically unobtainable) knowledge is required to dif-
ferentiate the small objects on the reconstruction that should be there from the others
such an undersmoothed reconstruction gives that should not. On balance, the choice
K =36 (Fig. 3) seems to be about as good as we can get. Large features are well
represented; there can be rather less confidence, though, in the smaller structure. Of
course, the smooth polynomial nature of our reconstruction method is a drawback
when, as here, piecewise smooth areas with considerable discontinuities in value at
feature boundaries make up the true image. The reader is left to append his or her own
adjectives to the goodness or otherwise of Fig. 3 as an approximation to Fig. 1!

White areas in Figs 2 to 4 are below the zero contour. The presence of such

negativity in our reconstructions is a property of the method that may be felt to be
undesirable; we note, at least, that negativity occurs in these figures only outside the

head region where there are no emissions in reality. Towards the outside of brain

space, some increase in estimated intensity levels is an edge effect which should be
ignored.
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6 Equivalent Weight Functions

Many density /intensity estimation methods can be written in the form of general
weight function estimators (e.g. Silverman, 1986, Section 2.9). In the usual case where

f is obtained from direct observations I(ri,O9)) as in (2), we can write

NAer,e0) = N-l w ( (ri,O8j), (r,e 0) (9)

i= I

where the weight function w is given by

w((R,e),(r,9) ) = ~(10)
vsK

When such direct observations are available from the density of interest, the weight
function expresses how a particular observation is smoothed out in making its contri-
bution to the overall estimate and hence gives insight into the nature of the smoothing

process; see, for example, Silverran (1984) for another relevant context.

Since the PET observation process is an indirect one, some modification of the
above discussion is necessary. An appropriate alternative definition of the weight func-
tion, equivalent in he c-,e of direct sampling, is as an "impulse response function".
That is, suppose that the true image consisted of a point mass at (R,e) and that N
indirect observations from this image were taken. Then, ignoring the tubecount discre-

-.,Lion and with the degree of smoothing held fixed, it is easily shown that j(r,O)
based on these data approaches w in (10) as N -+ -*. Thus, w remains the appropriate
weight function to study in the case of indirectly observed data too. As w and an alter-
native version of w which properly takes the data discretisation into account are virtu-
ally indistinguishable, we have not incorporated the data discretisation modification

here.

To make more of the above we present some pictorial illustrations. Fig. 5 shows
w for R = 0 and 9 = 0. Again, grey scale images are used in an obvious way (although

the overall scaling of the pictures in this section differs from that in Section 5). White
areas again define regions of negativity. The main features of Fig. 5 are the spherical
symmetry of the weight function and its concentration about the point (0,0). As in the

familiar kernel estimation approach, w has a mode at the point of interest and falls
smoothly away, resulting in an averaging over neighbouring values whose influence
becomes less as their distance from the centre increases. Beyond this central area, w is
small but not always positive; rather, there is a smooth fluctuation about zero, resulting
in a series of low positive peaks and shallow negative troughs. In Fig. 5, we have

taken K = 10. Larger values of K smooth less by narrowing the scope of the main part
of the weight function and thus averaging significantly over fewer neighbouring points.

The choice E = 0 in Fig. 5 is quite general; w is rotation equivariant so other 9's
result simply in rotations of the l = 0 picture. Different R's are worthy of further
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consideration, though: in Fig. 6, we take R = 0.5 and in Fig. 7, R- 0.9. The general

pattern of a peak at the point of interest, a smooth falling away of w in a neighbour-

hood of the point and the small positive/ negative fluctuations in the tails persist. The

weight function is, of course, no longer essentially spherically symmetric but rather is

distorted somewhat in a way consistent with fitting w appropriately into the disc. What

is important about Figs , to 7 is that the amount of smoothing (essentially the extent

and shape of the area in which w is significantly nonzero) does not differ greatly at

different points in brain space. Varying degrees of smoothing in response to properties

of f is an option (not considered here) that may well be desirable; varying degrees of

smoothing purely as a geometric function is not.

7 Automatic Choice of Smoothing Parameter

We saw in Section 5 how the parameter K controls the level of smoothing applied to

the data. Subjective choice of smoothing parameter, as there, is sufficient in many

applications of smoothing techniques but, in PET imaging, a fully automatic procedure,

and thus an automatic method for choosing K appropriately, might well be thought

desirable. In this section, we illustrate how a rather natural approach to choosing the

smoothing parameter in orthogonal series density .;stimation in general adapts to the

PET case.

Suppose we consider the mean integrated squared error (MISE) to be an appropri-

ate measure of discrepancy between f and f. The following development is entirely

analogous to the Fourier series density estimation case worked out in Hart (1985) and

references therein. First note that

f (r,9)-f(r,)1 2au(r,e) = Y b- 2  ,-g 2 + E b 2Ig 12.
viK v>K

Now ignore the tube discretisation for the moment (i.e. define g, like fv in (2) rather

than by using (8)), so that E(g )=g and Var(v)-'a2 where a 2

Var( V,(S,D)). Taking expectations in the above expression, we get

MISE = E b 2 (N 1 - 2 - Igv1 2 ) + ff If(r,O) I2 4d (r, O). (1i)
vSK

The value of K that minimises this MISE is a candidate for being a good choice of K

for the PET problem. Of course, we do not know MISE or its optimal K. Rather, we

drop the second term in (11) from further consideration because it is independent of K

and estimate the first term, I, say, as best we can; choosing K to minimise this esti-

mate (i) yields a practical procedure which, it is hoped, comes close to using the truly

optimal value of K. It is not difficult to show that

1= x b; 2 (N - l)-' (2", - (N+ 1I) 12) (12)
v<K
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is an unbiased estimate of I, so it is this formula that we minimise. In (12), s, is the

sample average of the I V 12's. In practice, we are stuck with the discretisaion of

detector space, so we use

T=N -x 11 n, I I zSrlt)1
t= 1

and J, as in (8) in I.

Since K is an integer, it is straightforward to minimise (12) by evaluating it over

a range of values of K; (D - 1) is an upper bound to this range due to an aliasing

effect although the optimal K is most likely to be much less than this anyway. Doing

this for the simulated example yields K = 36 and the corresponding figure is Fig. 3.

This is the image we preferred in Section 5 on subjective grounds. Of course, on the

basis of this one example only we make no great claims for !he supremacy of our

automatic procedure. For one thing, tlere is always scope for wayward choices due to
errors in estimating the MISE-optimal K. More importantly, the propriety or otherwise

of MISE as risk function is in question. It is widely recognised that this type of meas-

ure does not give a good reflection of the human observer's sense of image fidelity
especially when, as here, the true image contains features with distinct edges. The pro-

vision of image metrics that properly reflect visual perception remains a difficult ques-

tion; see Baddeley (1987) for some ideas. We persevered with the MISE development

above largely on grounds of tractability but are encouraged by the results: it is to be
hoped that alternative image metrics would also be open to a similar kind of approach.

Replacing the simple cutoff K in (4) by a sequence of weights {w, } remains an

alternative option but is one with similar problems of smoothing parameter choice.
Johnstone & Silverman (1988, Section 7) discuss optimal weight sequences for MISE;
these are, as is to be expected, not immediately practicable because they depend on the
true f. Otherwise, we might experiment with ad hoc weight sequences; the formulae in

Wahba (1981) become one possibility. These have not been pursued here.

8 The Third Dimension Effect

Photon lihes are in reality distributed uniformly in 3-dimensional space, not just in the

plane, and detectors have a finite depth, d. This effect of the third dimension is not
incorporated into the reconstruction' scheme above although it is important because it

persists even when d --* 0 i.e. our 2-dimensional model differs from the limit of the 3-
dimensional one. It turns out that, to a good approximation, the third dimension effect
results in a weighted Radon transform, the weight factor being inversely proportional

to the length of the detector tube (or, at least, its continuous analogue); see Section

4.1.4 of Silverman et al. (1988) and Section 10.2 of Johnstone & Silverman (1988) for

details.



We have not yet managed to modify the orthogonal series estimation approach to

cope with this. Rather, here we demonstrate the considerable effect that failure to do

so has on quality of image reconstruction. We can easily simulate data from the phan-

tom of Fig. 1 taking the third dimension into account by adding a further

acceptance /rejection step to deal with the inverse length bias; in fact, the resulting

dataset is precisely that used by Silverman et al. (1988) in their simulation example.

Applying the current (2-dimensional) reconstruction algorithm (here with K = 36) to

these (3-dimensional) data gives Fig. 8; compare this with Fig. 3 in particular. Th'

third dimension t~ffect on the data is clear: a smaller proportion of emissions occurring

towards the centre of the brain space will be detected than of those occurring nearer to

the edge. The consequences for the 2-dimensional reconstruction are equally clear:

greater intensities are attributed to outer regions than should be the case, while central

areas suffer the reverse mistake.

9 Discussion

Tnat the orthogonal series intensity estimation approach to PET image reconstruction is
quick compared with iterative procedures is borne out by the approximately 30-fold
improvement in computer time we have observed in comparison with the best EMS

procedure of Silverman et al. (1988). That it also suffers in comparison in terms of
important image quality criteria is also evident in at least three major ways:

(I) The smoothness of images made up of polynomials is not consistent with the

presence of edges which, we argued in Section 5, are most likely to be an impor-

tant feature of the real images we set out to reconstruct.

(II) There cannot be areas of the brain emitting negative numbers of positrons! EM
(Vardi et al., 1985) and EMS (Silverman er al., 1988) algorithms naturally result
in non-negative reconstructions; as we have seen, the orthogonal series approach

does not.

(I1) The Zernike/Chebyshev polynomial based approach is appropriate only to direct

and indirect observation spaces being linked by the basic Radon transform. Early

in Section 2 we noted the many modifications to this transform that are needed to
properly model the practical situation. The major obstacle to use of the orthogo-
nal series approach in more realistic circumstances is the need to obtain the

singular value decomposition associated with the correct integral transform. Note

that for EM-based approaches, it is only necessary (for many modifications) to

identify the right transform and to discretise it to get the p(b,d)'s of Vardi et al.

(1985).

The orthogonal series approach has further advantages as well as disadvantages.
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(i) It is straightforward to understand in the sense that it is a fairly direct application

of a well-known technique.

(ii) That there is no need to discretise brain space to facilitate reconstruction is partic-

ularly nice; the truly continuous nature of orthogonal series reconstruction is, con-

ceptually, most appealing.
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FIGURE LEGENDS

Fig. 1. An idealised PET image within a circular array of detectors. Two possible

photon lines arising from an emission at 0 are superimposed.

Fig. 2. Reconstruction with K = 10.

Fig. 3. Reconstruction with K = 36.

Fig. 4. Reconstruction with K = 50.

Fig. 5. An equivalent weight function corresponding to R = 0.

Fig. 6. An equivalent weight function corresponding to R = 0.5.

Fig. 7. An equivalent weight function corresponding to R = 0.9.

Fig. 8. Reconstruction (K = 36) arising from data incorporating the third dimen-

sion effect.
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Appendix 14

Aggregation and refinement in binary image'restoration.

by

M. Jubb and C. Jennison



1. Introduction
Recent developments in statistical image restoration use a Bayesian approach.

One observes a degraded version of a true scene after the addition of noise and,
possibly, blurring. If the degradation process and noise distribution are known, the
likelihood of the record can be combined with a prior probability model to produce a
posterior distribution for the true scene. A common approach is then to seek the
maximum a posteriori (MAP) estimate of the scene and present this as the restored
image.

For computational purposes it is extremely convenient to work with Markov
random field (MRF) models. Under a MRF model the scene is divided into pixels,
each of which can take a single colour or grey level, a neighbourhood strucrare for the
pixels is specified and the key property of the model is that the distribution of the
colouring of any pixel is conditionally independent of all other pixels, given the
colouring of its neighbours.

There are two main approaches to searching for the MAP estimate. Geman &
Geman (1984) proposed the method of simulated annealing. They have shown this to
be a versatile and effective method although thie amount of computation involved is
often high. Besag (1986) suggested a computationally simpler method which he refers
to as the method of iterated conditional modes (ICM). This method will normally
converge to a local rather than global maximum of the a posteriori likelihood;
howev,.r, convergence is rapid and, given the approximate nature of thz MRF model,
failure to find the global maximum may not be a serious drawback.

Jennison (1986) and Jennison & Jubb (1987) have shown that the same form of
MRF model can be used to obtain restorations of an image with detail at a finer level
than the pixel grid on which records are observed. In their original examples the noise
level was very low. The work reported in this paper grew out of an investigation into
the use of "refinement" methods in the presence of greater noise: the main problem in
this case is to find a good starting point for the refinement algorithm. In some of our
exploratory examples we discovered that the ICM method itself experienced serious
difficulties at very high noise levels. One solution to this problem is to increase the
signa! :c n,-e ratio by aggregating the records of, say, each 2 by 2 block of pixels
into a single record: satisfactory results were obtained by applying ICM to the
aggregated signal and then using the resulting restoration as the starting point for ICM
on the original pixel grid. A natural extension of this idea is a "cascade" algorithm,
similar to that of Gidas (1989), which produces restorations on successively finer pixel
grids, starting with a single large pixel and ending with the original grid. We have
found that this approach provides a simple and efficient way of adapting the ICM
method to very noisy data. It also solves the refinement problem, since the end
product of this algorithm, or even a restoration based on aggregated data, will provide
a good starting point for the refinement process.

Our intention in this paper it to follow the ICM approach as much as possible.
There arp sev,,rai places where simulated annealing might be incorporated but it would
require substantially more computing. and there is no guarantee that it would provide
better results. The main advantage of simulated annealing is that it allows one to
escape from a local maximum of the posterior likelihood by a process of trial and
error, however, use of the cascade algorithm to choose a good starting point for the
deterministic ICM algorithm may be just as effective. We do introduce a version of
simulated annealing to implement the refinement method of Section 5. Although this
provides a very convenient way of exploring a larger set of restorations, its impact on
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the final restored image for our example is slight.
Some comment on the role of the prior model for the true scene is called for.

Gidas (1989) goes to great lengths to ensure that, in his cascade algorithm, the models
at different pixel sizes are mutually consistent. We are not committed to a single
model and will be happy as !ong as the final restoration is a good one. It should also
be remembered that all that we require of the end product of one stage of the cascade
algorithm is that it should provide a good starting point for the next. We do not
assume that we have a global MAP estimate at any stage, nor do we try to make use
of such a property.

We shall use a single illustrative example throughout the paper. In the original
image the boundaries of objects are smooth in parts-but irregular in other places and
certain features are extremely difficult to restore given the level of noise in the data.
Thus, the example shows both the power of the proposed method and its limitations.

2. Model and notation

We first consider a rectangular region partitioned into pixels labelled 1,2,..., n.
Each pixel is coloured black or white and the colour of pixel i is denoted by x* which
takes the value 0 for white and I for black. The xj° are unobserved. It is assumed that
the conditional density function f(yi x*) is known and for the remainder of this pa,e-
we shall assume that the records yi. are independently distributed as Gaussian with
mean x-* and variance a 2. The set of records is denoted by y = {yi; i=l ... ,n}. A
colouring of pixel i (not necessarily the true colouring, xi*) is denoted by xi and a
specific colouring of the whole region is denoted by x = (xi; i= I . n}.

In the MRF model for the true scene we shall use a neighbourhood system in
which pixels are considered to be first order neighbours if they are horizontally or
vertically adjacent to each other and seqond order neighbours if they are diagonally
adjacent. In our model, the prior dis-ibution for the true scene, p(x), is

p(x) - expf- 1 tZ, (x)-+Z 2 (x)}], (2.1)

where ZI(x) is the number of discrepant first order pairs in the scene x, i.e. the
number of pairs of first order neighbours which are of opposite colour, Z2 (x) is the
number of discrepant second order pairs and P3 and 32 are fixed positive constants.

The MAP estimate of the true scene is the value of x which maximises P(xly),
the conditional probability of x given the record y. By Bayes' theorem

P(xly) - (ylx)p(x), (2.2)

where l(ylx) is the conditional likelihood of the observed record y, given the true
colouring, x, and p(x) is the prior probability of x. Thus, the maximisation of P(xly)
corresponds to the minimisation of

1 (yZ-)2 + tZt(X)+,Z,(x)j, (2.3)
2"2 i=t

over values ofx= {xi ;i=l i.

Besag's (1986) method of iterated conditional modes updates each pixel in turn,
choosing for it the most likely colour based on its record and the current colouring of
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its neighbours, i.e., minimising (2.3) with respect to x i with all the other pixel
colourings fixed. The expression in (2.3) must decrease or remain constant at each
updating but convergence will usually be to a local minimum. We shall see later in
this paper that the choice of the initial colouring can have a great influence on the
accuracy of the final restoration. Throughout this paper, when ICM is applied, a
second order neighbourhood system will be used with [ 2 =P31/vf; this ratio of 1 to P2
minimises the rotational variance of the second term of (2.3) with respect to the
positioning of the pixel grid on a given scene (see Brown, Jennison and Silverman,
1987).

In the above model for the true scene it is assumed that each pixel is coloured
wholly black or white. This is at best an approximation: more generally, one might
expect pixels on the boundary of an object to contain areas of each colour, in which
case the record yi will be distributed as Gaussian with variance o'2 and mean equal to
the proportion of pixel i coloured black. Although we shall consider problems in which
there is a general true scene, we start by considering restorations based on a discrete
MRF model in which each pixel has a single colour. The refinement method described
in Section 5 does, however, allow boundary pixels to be coloured partly black and
partly white.

3. An example

0

Figure 1. The true scene.

An example of a binary scene containing two separate objects is shown in Figure
1. A 256 by 256 pixel grid was superimposed on this scene and the proportion, pi, of
black in pixel i was calculated for each pixel. The record y, was obtained by adding
Gaussian noise with variance 4 to this proportion, pi . Figure 2 shows the closest
mean classifier for this record, in which a pixel is coloured black if its record is
greater than 0.5 and white otherwise. One would not nornallv hope to recover an
image which has been exposed to such a large amount of noise and Figure 3 shows the
rather unsatisfactory restoration obtained by applying 1CM with , =4. The value 3 =4
is unusually high but we found this to give the best results. (Note that even if 3
certain .:onfigurations of pixels remain unsmoothed.)

Th- major problem in our example is the low signal to noise ratio. This ratio
may be improved by aggregating the record, i.e., by replacing sets of 2 by 2 pixels by
a single large pixel with record equal to the average of the original four. This also
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corresponds to viewing the original image on a coarser grid. The variance of the new
record is one quarter that of the original but the range of the pi's is still [0, 1]; thus
there is a substantial increase in the signal to noise ratio. The restoration shown in
Figure 4 was obtained by applying [CM to the aggregated record; the prior model for
the true scene had the same form as (1.1) but was applied to larger pixels, the value
P, =4 was also used here as it was found to give the best results. The clear superiority
of this restoration to that shown in Figure 3 demonstrates the advantage of working
with the aggregated record. One explanation of the success of this restoration process
is that it allows the ICM algorithm to look further afield when gathering neighbour
information: 1CM on the original pixel grid can easily be trapped in a local maximum
of the a posteriori likelihood when only one pixel is allowed to change at a time.

Repeating the aggregation process gives the restorations shown in Figures 5 and
6, which are the restorations at two and three levels of aggregation respectively. These
restorations were obtained using P, = 1, a more typical value, which we have found
gives good results in cases where the signal to noise ratio is moderate. Note that the
computational time and storage requirements for the processing of a 32 by 32 image
are approximately - times those needed to process a 256 by 256 image.

So far, we have followed Besag's method and used the closest mean classifier as
our initial colouring for the 256 by 256 case and this is partly responsible for the poor
quality of the restoration in Figure 3. A better initial colouring might be the final
restoration obtained from an aggregated record. Figure 7 shows the result of using
Figure 5 as the initial colouring for ICM on the 256 by 256 grid with 51 =4; a similar
result is obtained with P, =1. The superiority of this restoration to that of Figure 3
demonstrates the influence of the initial colouring on the resulting image.

The method of simulated annealing is less dependent on the initial colouring,
since it can progress from one local minimum of (2.3) to another whilst passing
through higher intermediate values. Thus. simulated annealing is able to search at least
a little further afield .than the myopic ICM strategy. An advantage of using an
aggregation procedure is that it allows the ICM approach to use more distant
neighbour information whilst maintaining its computational speed.

4. The Cascade Algorithm

In the previous section we introduced the idea of using the restoration obtained
from an aggregated record as the initial colouring for restoration on a finer scale. We
now extend this idea to define a "cascade" algorithm in which restorations obtained
from 2' by 2 ' grids are used as the initial colourings for restorations on 2 1l by
2 m.- 1 grids. A single pixel restoration is obtained by aggregating the record until it is
one pixel in size: this is then used as the initial colouring for the ICM method on the 2
by 2 grid. This restoration is in turn used as the initial colouring for 1CM on the 4 by
4 grid and we continue in this way, obtaining restorations right up to the level of the
originai record. The last six in the series of restorations for our example are shown in
Figures 8-13, the value 3 = I was used at each level, though it is interesting to note
that using higher values at the 128 and 256 levels made virtually no difference to the
image obtained.

The method of Gidas (1989) is %ery similar to the procedure we have just
described. However, Gidas uses a single MRF model defined on the finest pixel grid
and employs the "renormalization group" approach to compute the models implied for
coarser grids. Both the complexity of the models at the aggregated levels and the use
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of simulated annealing at each stage makes this a computationally demanding method.
We have tried to keep computation to a minimum at the expense of a less rigorous
treatment of the prior model: given the approximate nature of this model, we would
argue that this is not unreasonable.

One might at least try to develop theoretical arguments to produce a "correct"
sequence of values of 1 for use at different stages of the cascade algorithm. Brown,
Jennison and Silverman (1987) interpret the second term of (2.3) as a penalty and
suggest that it should be chosen to be approximately independent of the pixel grid
superimposed. They suggest that this penalty should approximate a constant multiple
of the total boundary length in the image. In our application this would imply that the
parameter 31 be halved as the pixel sizes are quartered but we have not found this to
be very successful in practice. Using the same value of 0 1 at each stage produced
substantially better results.

When processing the larger images we avoid unneccssary computations by storing
the coordinates of pixels whose colourings have changed in the current iteration. If the
number of these is small, only pixels whose neighbours have changed colour in the
last iteration are considered for updating in the next iteration. For each of the images
shown in Figures 8-13 one complete iteration plus some minor changes was all that
was required. Summing a geometric series, we see that the total computation required
is approximately equivalent to 1 - iterations of ICM on the finest pixel grid.

We have seen that the restorations obtained on the finer grids have been
insensitive, to the choice of 3t . This is partly attributable to the high noise level
(updating is essentially by the "majority vote rule" at quite low values of 1) but also
suggests that, for a given image, restoration at too fine a pixel level is unnecessary,
adding only computation and superfluous detail tc what is already a satisfactory
restoration. We are able to make a direct comparison of restorations obtained at
different levels of aggregation by superimposing the finer grid on the coarser image
and calculating penalties for both, based on the finer record and the MRF model at that
level. The coarser image is disadvantaged, since it was chosen when searching for the
minimum of a different penalty. We measure the benefit of restoring at the finer level
by the percentage decrease in the penalty. The values are tabulated below.

Grid size Grid size percentage
of coarse of fine reduction
restoration restoration in penalty

2x2 -4x4 68.1
4x4 8x 8 75.8
8 x 8 16x 16 49.6

16 x 16 32 x 32 21.5
32 x 32 64 x 64 5.2
64 x 64 128 x 128 1.6

128 x 128 256 x 256 0.6

Analysis of these values is purely subjective but appears to suggest that the 64 by 64
level is satisfactory. Inspection of Figures 8-13 also leads to the same conclusions.
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5. Subpixel refinement

So far the restoration techniques we have used have coloured each pixel wholly
one colour, even though pixels on the edges of objects in the true scene may be partly
black and partly white. We now consider techniques which allow both colours to
appear in a single pixel. Jennison (1986) used a modification of the ICM method to
obtain a restoration in which each pixel was divided into 4 subpixel quarters and a
separate colour allocated to each subpixel. His method used the 1CM restoration at full
pixel size as a starting point for restoration at the subpixel level. The success of this
technique prompted Jennison and Jubb (1987) to consider the further refinement of
pixels.

Since the number of different colourings of a pixel grows exponentially with the
number of subpixels, the extension of Jennison's method to a finer subdivision of each
pixel is computationally prohibitive. However, the limit of this process, in which an
arbitrary colouring of each pixel is allowed, can be made tractable. Rather than
specify a MRF model for the true scene we interpret the minimisation of (2.3) as a
form of penalised maximum likelihood. The second term of (2.3) is, approximately, a
multiple of the total boundary length in the image, x. Thus, an analogous penalty for a
general restoration, x, is

+ (y-,xX, (+.1)

where pi(x) denotes the proportion of black in pixel i, L(x) is the total edge length in

scene x and P is a fixed constant. For computational simplicity we restrict attention to
restorations in which pixels are either of a single colour or are separated into areas of
different colour by a single straight line with the line segments defining such areas in
adjacent pixels meeting at a point.

A black and white image can be regarded as a series of line segments separating
the two colours. Jennison and Jubb (1987) use the restoration obtained from Jennison's
quarter pixel method is used an initial representation for the line segments. The
updating process treats pixels in pairs, selecting the best place for two edges to meet,
given the current restoration of neighbouring pixels. We repeat the details for
-completeness.

Figure 14. Updating the position of edges in pixels i and j.

As an example, consider the configuration at pixels i and j shown in Figure 14.
The distances a and b are determined by the current colouring of neighbouring pixels
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and treated as constant for the moment. The distance W is chosen to minimise the
contribution from pixels i and j to the total penalty (5.1), i.e.

(W) , (yk - pkW) 2 + P3(ew + ew), (5.2)
2(W k=i.j

where ekw is the length of edge in pixel k when the join is at W and Pkw is the
proportion of black in pixel k when the join is at W.

For the case shown in Figure 14, this penalty is

gl (W) = a {(yi-a-.(W-a))2 +(-b-(W-b)) 2 }

+ P3(1l+(W-a)2+l1+(W-b)2}.

This can not be minimised directly but the form of

dg,(W) (W-a (W-b)
dW__ ..,.(2W+a- 2y i+b - 2 yj ) + l+( ): ,1+(W0b)2]

suggests an iterative approach. Given an approximate uiudon W,- 1 we solve

[ (Wy-a) (W4'-b) 1
2"-(2V,+a-2i+b-2y) + P3 -O

to obtain

4y2[ a 1 l+(WV b)2 + (2yi-a+2yj-b)

2+4(72p[2+4 2 O, -W~l a )  I ,+(W,- I b )
2

Starting from any sensible initial value, WV0, accuracy to 3 decimal places was
achieved after at most four iterations. In practice we take WO to be the value of W
prior to this update.

Different forms of (5.2) are possible depending on which neighbours of pixels i
and j contain both colours. There are only four distinct cases that may arise and these
are shown in Figure 15.

We have shown the method of solution for case (i); cases (ii) - (iv) are solved in
a similar way. All other cases can be reduced to one of the above by means of
exchanging and/or inverting the pixels and their colours. The edge pixels are updated
in turn, following an edge around, completing circuits of the edge until convergence.
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Fig. 15. Possible configurations of edges in two neighbouring pixels,

The complete restoration algorithm

We can now combine both aggregation and refinement into a three stage
algorithm:

Stage 1: Apply the cascade algorithm using ICM on the
aggregated records .up to a suitable point. The record is
now fixed at this level and no further use will be made of
the original record. (If the record is still aggregated at
this level substantial savings in computation will result.)
avoiding unnecessary computation.

Stage 2: Iterate Jennison's quarter pixel refinement to convergence.
This is very quick and supplies a good starting point for
the line fitting process.

Stage 3: Apply the line fitting algorithm to convergence.

A development in the line fitting algorithm
In the line fitting algorithm described by Jennison and Jubb (1987) the route that

the lines take through pixel edges is determined once and for all by the restoration
cbai..= the q= . : 74-el level.
We have now extended the algorithm to allow changes in this route. Each time the

point at which the edge crosses a pixel boundary is updated an alternative route is
compared. A number of cases have to be treated separately- three qualitatively
different configurations are shown in Figure 16.



Fig. 16. Examples of configurations at whicii alternative routes are considered.

The contribution to the total penalty from all four pixels is calculated for each of the
two routes with line edges chosen optimally for that route. In the basic method, the
route which has smallest penalty is then chosen.

Figure 17. Figure 18.

Figures 17 and 18 show the restorations obtained from applying the line fitting
method to the aggregated record in the example. In Figure 17 the grid size is 32 by
32 and in Figure 18 it is 64 by 64. In the previous section we suggested that a grid
size of 64 by 64 would be sufficient and the restoration shown in Figure 18 is indeed
satisfactory. In both cases we used =1 at the ICM and quarter pixel levels of
restoration and P=4 for the line fitting.

The updating process in the above line fitting procedure has the general
characteristics of an 1CM method: the penalty (5.1) is minimised with respect to one
component of the boundary whilst everything else is held fixed. This method will
generally yield a local minimum of (5.1) and it is possible that the final restoration
could be improved further by making a number of route changes simultaneously. For
example, the penalty (5.1) might be reduced by moving a long vertical edge one pixel
to the left whereas it would increase initially if only one route change were made at a
time.

To allow further exploration of alternative routes we have implemented a form of
simulated annealing. This method retains the property that for a given route the point
on a pixel edge at which two line segments meet is chosen optimally. However, when
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comparing the minimum penalties for different routes we allow the route with the
larger penalty to be chosen with non-zero probability. Suppose two routes, A and B,
have minimum penalties penA and penB, then, when the annealing process is at
temperature T we select route A and its optimal edges with probability

e (-penAIT)
e (- A"'nr) +e (-pensT)

otherwise we choose route B. Of course, only the contribution to the total penalty
from the four pixels concerned need actually be calculated.

By restricting the random choice to the route alone, we ensure that, effectively,
the annealing process is applied to a fairly low dimension problem, the number of
variables being of the order of the number of boundary pixels. Theorem B of Geman
and Geman (1984) demonstrates the convergence of their simulated annealing method.
In its stated form, this theorem does not apply to our hybrid procedure whose iterative
steps combine a random choice of route with a deterministic choice of edges given that
route and currently fixed end points. Perhaps a sufficiently general result could be
proved but this would, presumably, still only apply for gentle cooling schedules.
However, we prefer to think of the annealing method simply as a convenient numerical
procedure which searches a little further afield than the ICM approach.

We have experimented with a variety of cooling schedules for our example using
the aggregated record at both the 32 by 32 and 64 by 64 grid levels. The best results
were obtained using a cooling schedule in which T decreased logarithmically from 3.5
to 0.5 over several hundred sweeps and linearly from 0.5 to zero over several hundred
more. We then continued to update using T=0 until convergence, which usually
required only a few sweeps. Although simulated annealing often produced a lower
penalty, the restoration produced was never visually superior to that obtained using the
local maximisation procedure.

Our conclusion is that the starting point provided by the cascade algorithm was
sufficiently good that the deterministic line fitting algorithm was very nearly optimal.

6. Concluding Remarks.
Combining the line fitting procedure with the cascade algorithm has produced a

fast and effective method for obtaining a high quality restoration from noisy data.
Further work is required to provide an automatic choice of suitable values of P, at
different grid levels and a criterion for terminating the cascade algorithm at the most
appropriate level of aggregation. Although we have considered only two-colour
images in this paper, it is clear that the basic ideas are more generaly applicable: we
hope to continue work on the development of an aggregation and refinement algorithm
for garey level images.

References

Besag, J. E. (1986) On the statistical analysis of dirty pictures. I. Royal Statist. Soc. B. 148, 259-302.

Brown, T. C., Jennison, C. and Silverman, B. W. (1987) Edge process models for regular and irregular

pixels. Submitted for publication.



lm- -1

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Trans. Pattern Anal. Machine Intell., 6, 721-741.

Gidas, B. (1989) A renormalization approach to image processing problems. IEEE Trans. Pattern Anal.

Machine Intell., to appear.

Jennison, C. (1986) Contribution to discussion of Besag (1986) J. Royal Statist. Soc. B, 148, 288-289.

Jennison, C. and Jubb, M. (1987) Statistical image restoration and refinement. Proc. XI lWz. Proc. in

Med. Imaging Conf., to appear.


